**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Concept# Pseudo-Euclidean space

Summary

In mathematics and theoretical physics, a pseudo-Euclidean space is a finite-dimensional real n-space together with a non-degenerate quadratic form q. Such a quadratic form can, given a suitable choice of basis (e1, ..., en), be applied to a vector x = x1e1 + ⋯ + xnen, giving
which is called the scalar square of the vector x.
For Euclidean spaces, k = n, implying that the quadratic form is positive-definite. When 0 < k < n, q is an isotropic quadratic form, otherwise it is anisotropic. Note that if 1 ≤ i ≤ k < j ≤ n, then q(ei + ej) = 0, so that ei + ej is a null vector. In a pseudo-Euclidean space with k < n, unlike in a Euclidean space, there exist vectors with negative scalar square.
As with the term Euclidean space, the term pseudo-Euclidean space may be used to refer to an affine space or a vector space depending on the author, with the latter alternatively being referred to as a pseudo-Euclidean vector space (see point–vector distinction).
The geometry of a pseudo-Euclidean space is consistent despite some properties of Euclidean space not applying, most notably that it is not a metric space as explained below. The affine structure is unchanged, and thus also the concepts line, plane and, generally, of an affine subspace (flat), as well as line segments.
A null vector is a vector for which the quadratic form is zero. Unlike in a Euclidean space, such a vector can be non-zero, in which case it is self-orthogonal.
If the quadratic form is indefinite, a pseudo-Euclidean space has a linear cone of null vectors given by {x : q(x) = 0}. When the pseudo-Euclidean space provides a model for spacetime (see below), the null cone is called the light cone of the origin.
The null cone separates two open sets, respectively for which q(x) > 0 and q(x) < 0. If k ≥ 2, then the set of vectors for which q(x) > 0 is connected. If k = 1, then it consists of two disjoint parts, one with x1 > 0 and another with x1 < 0. Similarly, if n − k ≥ 2, then the set of vectors for which q(x) < 0 is connected.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts (18)

Related publications (98)

Related people (23)

Related MOOCs (1)

Related courses (25)

Isotropic quadratic form

In mathematics, a quadratic form over a field F is said to be isotropic if there is a non-zero vector on which the form evaluates to zero. Otherwise the quadratic form is anisotropic. More explicitly, if q is a quadratic form on a vector space V over F, then a non-zero vector v in V is said to be isotropic if q(v) = 0. A quadratic form is isotropic if and only if there exists a non-zero isotropic vector (or null vector) for that quadratic form. Suppose that (V, q) is quadratic space and W is a subspace of V.

Flat (geometry)

In geometry, a flat or Euclidean subspace is a subset of a Euclidean space that is itself a Euclidean space (of lower dimension). The flats in two-dimensional space are points and lines, and the flats in three-dimensional space are points, lines, and planes. In a n-dimensional space, there are flats of every dimension from 0 to n − 1; flats of dimension n − 1 are called hyperplanes. Flats are the affine subspaces of Euclidean spaces, which means that they are similar to linear subspaces, except that they need not pass through the origin.

Real coordinate space

In mathematics, the real coordinate space of dimension n, denoted Rn or , is the set of the n-tuples of real numbers, that is the set of all sequences of n real numbers. Special cases are called the real line R1 and the real coordinate plane R2. With component-wise addition and scalar multiplication, it is a real vector space, and its elements are called coordinate vectors. The coordinates over any basis of the elements of a real vector space form a real coordinate space of the same dimension as that of the vector space.

Related units (13)

, , , , , , , , ,

Learn to optimize on smooth, nonlinear spaces: Join us to build your foundations (starting at "what is a manifold?") and confidently implement your first algorithm (Riemannian gradient descent).

Related lectures (83)

The course provides an introduction to the study of curves and surfaces in Euclidean spaces. We will learn how we can apply ideas from differential and integral calculus and linear algebra in order to

The course studies fundamental concepts of analysis and the calculus of functions of several variables.

Ce cours vise à approfondir la compréhension des lois de fonctionnement de plusieurs principes mécaniques majeurs et largement utilisés en construction de machines, en vue d'être capable d'en faire le

Polymer Behavior: Force-Extension CurvePHYS-441: Statistical physics of biomacromolecules

Delves into the entropic behavior of polymers through force-extension curves.

Weyl Characters and Borcherds ProductsMATH-680: Monstrous moonshine

Explores Weyl characters, Macdonald's identities, and Borcherds products in Euclidean space.

Euclidean Correlation FunctionsPHYS-426: Quantum physics IV

Explores Euclidean correlation functions and the transition to real-time correlators, emphasizing analyticity and time ordering in thermal n-point functions.

Thanh Trung Huynh, Quoc Viet Hung Nguyen, Thành Tâm Nguyên

The task of discovering equivalent entities in knowledge graphs (KGs), so-called KG entity alignment, has drawn much attention to overcome the incompleteness problem of KGs. The majority of existing techniques learns the pointwise representations of entiti ...

In this thesis, we concentrate on advancing high-level behavioral control policies for robotic systems within the framework of Dynamical Systems (DS). Throughout the course of this research, a unifying thread weaving through diverse fields emerges, and tha ...

Romain Christophe Rémy Fleury, Haoye Qin, Aleksi Antoine Bossart, Zhechen Zhang

Hyperbolic lattices are a new type of synthetic materials based on regular tessellations in non-Euclidean spaces with constant negative curvature. While so far, there has been several theoretical investigations of hyperbolic topological media, experimental ...

2024