In botany and mycology, a haustorium (plural haustoria) is a rootlike structure that grows into or around another structure to absorb water or nutrients. For example, in mistletoe or members of the broomrape family, the structure penetrates the host's tissue and draws nutrients from it. In mycology, it refers to the appendage or portion of a parasitic fungus (the hyphal tip), which performs a similar function. Microscopic haustoria penetrate the host plant's cell wall and siphon nutrients from the space between the cell wall and plasma membrane but do not penetrate the membrane itself. Larger (usually botanical, not fungal) haustoria do this at the tissue level. The etymology of the name corresponds to the Latin word haustor meaning the one who draws, drains or drinks, and refers to the action performed by the outgrowth. Fungi in all major divisions form haustoria. Haustoria take several forms. Generally, on penetration, the fungus increases the surface area in contact with host plasma membrane releasing enzymes that break up the cell walls, enabling greater potential movement of organic carbon from host to fungus. Thus, an insect hosting a parasitic fungus such as Cordyceps may look as though it is being "eaten from the inside out" as the haustoria expand inside of it. The simplest forms of haustoria are small spheres. The largest are complex formations adding significant mass to a cell, expanding between the cell wall and cell membrane. In the Chytridiomycota, the entire fungus may become enclosed in the cell, and it is arguable whether this should be considered analogous to a haustorium. Haustoria arise from intercellular hyphae, appressoria, or external hyphae. The hypha narrows as it passes through the cell wall and then expands on invaginating the cell. A thickened, electron-dense collar of material is deposited around the hypha at the point of invagination. Further, the host cell wall becomes highly modified in the invaginated zone. Inclusions normally present in plasma membrane are absent, and the outer layer contains more polysaccharide.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.