Gravitational-wave astronomy is an emerging field of science, concerning the observations of gravitational waves (minute distortions of spacetime predicted by Albert Einstein's theory of general relativity) to collect relatively unique data and make inferences about objects such as neutron stars and black holes, events such as supernovae, and processes including those of the early universe shortly after the Big Bang.
Gravitational wave
Gravitational waves are waves of the intensity of gravity generated by the accelerated masses of an orbital binary system that propagate as waves outward from their source at the speed of light. They were first proposed by Oliver Heaviside in 1893 and then later by Henri Poincaré in 1905 as waves similar to electromagnetic waves but the gravitational equivalent.
Gravitational waves were later predicted in 1916 by Albert Einstein on the basis of his general theory of relativity as ripples in spacetime. Later he refused to accept gravitational waves. Gravitational waves transport energy as gravitational radiation, a form of radiant energy similar to electromagnetic radiation. Newton's law of universal gravitation, part of classical mechanics, does not provide for their existence, since that law is predicated on the assumption that physical interactions propagate instantaneously (at infinite speed) – showing one of the ways the methods of Newtonian physics are unable to explain phenomena associated with relativity.
The first indirect evidence for the existence of gravitational waves came in 1974 from the observed orbital decay of the Hulse–Taylor binary pulsar, which matched the decay predicted by general relativity as energy is lost to gravitational radiation. In 1993, Russell A. Hulse and Joseph Hooton Taylor Jr. received the Nobel Prize in Physics for this discovery.
Direct observation of gravitational waves was not made until 2015, when a signal generated by the merger of two black holes was received by the LIGO gravitational wave detectors in Livingston, Louisiana, and in Hanford, Washington.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course is the basic introduction to modern cosmology. It introduces students to the main concepts and formalism of cosmology, the observational status of Hot Big Bang theory
and discusses major
Introduction to time-variable astrophysical objects and processes, from Space Weather to stars, black holes, and galaxies. Introduction to time-series analysis, instrumentation targeting variability,
A gravitational-wave detector (used in a gravitational-wave observatory) is any device designed to measure tiny distortions of spacetime called gravitational waves. Since the 1960s, various kinds of gravitational-wave detectors have been built and constantly improved. The present-day generation of laser interferometers has reached the necessary sensitivity to detect gravitational waves from astronomical sources, thus forming the primary tool of gravitational-wave astronomy.
The first direct observation of gravitational waves was made on 14 September 2015 and was announced by the LIGO and Virgo collaborations on 11 February 2016. Previously, gravitational waves had been inferred only indirectly, via their effect on the timing of pulsars in binary star systems. The waveform, detected by both LIGO observatories, matched the predictions of general relativity for a gravitational wave emanating from the inward spiral and merger of a pair of black holes of around 36 and 29 solar masses and the subsequent "ringdown" of the single resulting black hole.
Tests of general relativity serve to establish observational evidence for the theory of general relativity. The first three tests, proposed by Albert Einstein in 1915, concerned the "anomalous" precession of the perihelion of Mercury, the bending of light in gravitational fields, and the gravitational redshift. The precession of Mercury was already known; experiments showing light bending in accordance with the predictions of general relativity were performed in 1919, with increasingly precise measurements made in subsequent tests; and scientists claimed to have measured the gravitational redshift in 1925, although measurements sensitive enough to actually confirm the theory were not made until 1954.
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Learn about plasma applications from nuclear fusion powering the sun, to making integrated circuits, to generating electricity.
Explores the history, detection, and significance of gravitational waves, covering key experiments and projects in gravitational wave astronomy.
Explores the production and detection of gravitational waves, the quadrupole formula, and the first observation of gravitational waves on 14/09/2015.
Explores the history, detection, and implications of gravitational waves, covering technical aspects and historical milestones.
Multiply lensed images of a same source experience a relative time delay in the arrival of photons due to the path length difference and the different gravitational potentials the photons travel through. This effect can be used to measure absolute distance ...
Fields of technology as diverse as microwave filter construction, characterization of material interfaces with atomic precision, and detection of gravitational waves from astronomical sources employ mechanical resonators at their core. The utility of mecha ...
EPFL2023
,
We update the publicly available weak lensing shear measurement algorithm pyRRG for the JWST, and apply it to UNCOVER DR1 imaging of galaxy cluster Abell 2744. At short wavelengths (