Differentiable manifoldIn mathematics, a differentiable manifold (also differential manifold) is a type of manifold that is locally similar enough to a vector space to allow one to apply calculus. Any manifold can be described by a collection of charts (atlas). One may then apply ideas from calculus while working within the individual charts, since each chart lies within a vector space to which the usual rules of calculus apply. If the charts are suitably compatible (namely, the transition from one chart to another is differentiable), then computations done in one chart are valid in any other differentiable chart.
H-cobordismIn geometric topology and differential topology, an (n + 1)-dimensional cobordism W between n-dimensional manifolds M and N is an h-cobordism (the h stands for homotopy equivalence) if the inclusion maps are homotopy equivalences. The h-cobordism theorem gives sufficient conditions for an h-cobordism to be trivial, i.e., to be C-isomorphic to the cylinder M × [0, 1]. Here C refers to any of the categories of smooth, piecewise linear, or topological manifolds.
Homotopy groups of spheresIn the mathematical field of algebraic topology, the homotopy groups of spheres describe how spheres of various dimensions can wrap around each other. They are examples of topological invariants, which reflect, in algebraic terms, the structure of spheres viewed as topological spaces, forgetting about their precise geometry. Unlike homology groups, which are also topological invariants, the homotopy groups are surprisingly complex and difficult to compute.
Homotopy sphereIn algebraic topology, a branch of mathematics, a homotopy sphere is an n-manifold that is homotopy equivalent to the n-sphere. It thus has the same homotopy groups and the same homology groups as the n-sphere, and so every homotopy sphere is necessarily a homology sphere. The topological generalized Poincaré conjecture is that any n-dimensional homotopy sphere is homeomorphic to the n-sphere; it was solved by Stephen Smale in dimensions five and higher, by Michael Freedman in dimension 4, and for dimension 3 (the original Poincaré conjecture) by Grigori Perelman in 2005.
4-manifoldIn mathematics, a 4-manifold is a 4-dimensional topological manifold. A smooth 4-manifold is a 4-manifold with a smooth structure. In dimension four, in marked contrast with lower dimensions, topological and smooth manifolds are quite different. There exist some topological 4-manifolds which admit no smooth structure, and even if there exists a smooth structure, it need not be unique (i.e. there are smooth 4-manifolds which are homeomorphic but not diffeomorphic).
Piecewise linear manifoldIn mathematics, a piecewise linear (PL) manifold is a topological manifold together with a piecewise linear structure on it. Such a structure can be defined by means of an atlas, such that one can pass from chart to chart in it by piecewise linear functions. This is slightly stronger than the topological notion of a triangulation. An isomorphism of PL manifolds is called a PL homeomorphism.
Surgery theoryIn mathematics, specifically in geometric topology, surgery theory is a collection of techniques used to produce one finite-dimensional manifold from another in a 'controlled' way, introduced by . Milnor called this technique surgery, while Andrew Wallace called it spherical modification. The "surgery" on a differentiable manifold M of dimension , could be described as removing an imbedded sphere of dimension p from M. Originally developed for differentiable (or, smooth) manifolds, surgery techniques also apply to piecewise linear (PL-) and topological manifolds.
Exotic R4DISPLAYTITLE:Exotic R4 In mathematics, an exotic is a differentiable manifold that is homeomorphic (i.e. shape preserving) but not diffeomorphic (i.e. non smooth) to the Euclidean space The first examples were found in 1982 by Michael Freedman and others, by using the contrast between Freedman's theorems about topological 4-manifolds, and Simon Donaldson's theorems about smooth 4-manifolds. There is a continuum of non-diffeomorphic differentiable structures of as was shown first by Clifford Taubes.
Alexander's trickAlexander's trick, also known as the Alexander trick, is a basic result in geometric topology, named after J. W. Alexander. Two homeomorphisms of the n-dimensional ball which agree on the boundary sphere are isotopic. More generally, two homeomorphisms of Dn that are isotopic on the boundary are isotopic. Base case: every homeomorphism which fixes the boundary is isotopic to the identity relative to the boundary. If satisfies , then an isotopy connecting f to the identity is given by Visually, the homeomorphism is 'straightened out' from the boundary, 'squeezing' down to the origin.
Differential topologyIn mathematics, differential topology is the field dealing with the topological properties and smooth properties of smooth manifolds. In this sense differential topology is distinct from the closely related field of differential geometry, which concerns the geometric properties of smooth manifolds, including notions of size, distance, and rigid shape. By comparison differential topology is concerned with coarser properties, such as the number of holes in a manifold, its homotopy type, or the structure of its diffeomorphism group.