**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Concept# Homotopy groups of spheres

Summary

In the mathematical field of algebraic topology, the homotopy groups of spheres describe how spheres of various dimensions can wrap around each other. They are examples of topological invariants, which reflect, in algebraic terms, the structure of spheres viewed as topological spaces, forgetting about their precise geometry. Unlike homology groups, which are also topological invariants, the homotopy groups are surprisingly complex and difficult to compute.
The n-dimensional unit sphere — called the n-sphere for brevity, and denoted as Sn — generalizes the familiar circle (S1) and the ordinary sphere (S2). The n-sphere may be defined geometrically as the set of points in a Euclidean space of dimension n + 1 located at a unit distance from the origin. The i-th homotopy group πi(Sn) summarizes the different ways in which the i-dimensional sphere Si can be mapped continuously into the n-dimensional sphere Sn. This summary does not distinguish between two mappings if one can be continuously deformed to the other; thus, only equivalence classes of mappings are summarized. An "addition" operation defined on these equivalence classes makes the set of equivalence classes into an abelian group.
The problem of determining πi(Sn) falls into three regimes, depending on whether i is less than, equal to, or greater than n:
For 0 < i < n, any mapping from Si to Sn is homotopic (i.e., continuously deformable) to a constant mapping, i.e., a mapping that maps all of Si to a single point of Sn. Therefore the homotopy group is the trivial group.
When i = n, every map from Sn to itself has a degree that measures how many times the sphere is wrapped around itself. This degree identifies the homotopy group πn(Sn) with the group of integers under addition. For example, every point on a circle can be mapped continuously onto a point of another circle; as the first point is moved around the first circle, the second point may cycle several times around the second circle, depending on the particular mapping.
The most interesting and surprising results occur when i > n.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related courses (8)

Related concepts (39)

MATH-436: Homotopical algebra

This course will provide an introduction to model category theory, which is an abstract framework for generalizing homotopy theory beyond topological spaces and continuous maps. We will study numerous

MATH-506: Topology IV.b - cohomology rings

Singular cohomology is defined by dualizing the singular chain complex for spaces. We will study its basic properties, see how it acquires a multiplicative structure and becomes a graded commutative a

MATH-323: Topology III - Homology

Homology is one of the most important tools to study topological spaces and it plays an important role in many fields of mathematics. The aim of this course is to introduce this notion, understand its

In the mathematical field of algebraic topology, the homotopy groups of spheres describe how spheres of various dimensions can wrap around each other. They are examples of topological invariants, which reflect, in algebraic terms, the structure of spheres viewed as topological spaces, forgetting about their precise geometry. Unlike homology groups, which are also topological invariants, the homotopy groups are surprisingly complex and difficult to compute.

In mathematics, in particular in algebraic topology, the Hopf invariant is a homotopy invariant of certain maps between n-spheres. **TOC** In 1931 Heinz Hopf used Clifford parallels to construct the Hopf map and proved that is essential, i.e., not homotopic to the constant map, by using the fact that the linking number of the circles is equal to 1, for any . It was later shown that the homotopy group is the infinite cyclic group generated by .

Hans Freudenthal (17 September 1905 – 13 October 1990) was a Jewish German-born Dutch mathematician. He made substantial contributions to algebraic topology and also took an interest in literature, philosophy, history and mathematics education. Freudenthal was born in Luckenwalde, Brandenburg, on 17 September 1905, the son of a Jewish teacher. He was interested in both mathematics and literature as a child, and studied mathematics at the University of Berlin beginning in 1923. He met L. E. J.

Related lectures (215)

Steenrod SquaresMATH-506: Topology IV.b - cohomology rings

Covers the concept of Steenrod Squares and their applications in stable cohomology operations.

The Topological Künneth TheoremMATH-506: Topology IV.b - cohomology rings

Explores the topological Künneth Theorem, emphasizing commutativity and homotopy equivalence in chain complexes.

Jordan Curve TheoremMATH-323: Topology III - Homology

Covers the proof of the Jordan Curve Theorem and the properties of embedded spheres.