**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Concept# Piecewise linear manifold

Summary

In mathematics, a piecewise linear (PL) manifold is a topological manifold together with a piecewise linear structure on it. Such a structure can be defined by means of an atlas, such that one can pass from chart to chart in it by piecewise linear functions. This is slightly stronger than the topological notion of a triangulation.
An isomorphism of PL manifolds is called a PL homeomorphism.
PL, or more precisely PDIFF, sits between DIFF (the category of smooth manifolds) and TOP (the category of topological manifolds): it is categorically "better behaved" than DIFF — for example, the Generalized Poincaré conjecture is true in PL (with the possible exception of dimension 4, where it is equivalent to DIFF), but is false generally in DIFF — but is "worse behaved" than TOP, as elaborated in surgery theory.
Smooth manifolds have canonical PL structures — they are uniquely triangulizable, by Whitehead's theorem on triangulation — but PL manifolds do not always have smooth structures — they are not always smoothable. This relation can be elaborated by introducing the category PDIFF, which contains both DIFF and PL, and is equivalent to PL.
One way in which PL is better behaved than DIFF is that one can take cones in PL, but not in DIFF — the cone point is acceptable in PL.
A consequence is that the Generalized Poincaré conjecture is true in PL for dimensions greater than four — the proof is to take a homotopy sphere, remove two balls, apply the h-cobordism theorem to conclude that this is a cylinder, and then attach cones to recover a sphere. This last step works in PL but not in DIFF, giving rise to exotic spheres.
Hauptvermutung
Not every topological manifold admits a PL structure, and of those that do, the PL structure need not be unique—it can have infinitely many. This is elaborated at Hauptvermutung.
The obstruction to placing a PL structure on a topological manifold is the Kirby–Siebenmann class. To be precise, the Kirby-Siebenmann class is the obstruction to placing a PL-structure on M x R and in dimensions n > 4, the KS class vanishes if and only if M has at least one PL-structure.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications

Loading

Related people

Loading

Related units

Loading

Related concepts

Loading

Related courses

Loading

Related lectures

Loading

Related MOOCs

Loading

Related publications (2)

Related people

Related units

Related concepts (6)

Related courses (1)

Related lectures (9)

Related MOOCs

No results

No results

No results

Embedded Submanifolds: Stiefel Manifold

Covers embedded submanifolds, Stiefel manifold, tangent spaces, and differential ranks.

Smooth Manifolds: Diffeomorphisms

Explores smooth manifolds through diffeomorphisms and embedded submanifolds in a linear space.

Conformal Transformations: Part 1

Covers the topic of conformal transformations, including translations, dilations, rotations, and the conformal algebra.

Piecewise linear manifold

In mathematics, a piecewise linear (PL) manifold is a topological manifold together with a piecewise linear structure on it. Such a structure can be defined by means of an atlas, such that one can pass from chart to chart in it by piecewise linear functions. This is slightly stronger than the topological notion of a triangulation. An isomorphism of PL manifolds is called a PL homeomorphism.

Surgery theory

In mathematics, specifically in geometric topology, surgery theory is a collection of techniques used to produce one finite-dimensional manifold from another in a 'controlled' way, introduced by . Milnor called this technique surgery, while Andrew Wallace called it spherical modification. The "surgery" on a differentiable manifold M of dimension , could be described as removing an imbedded sphere of dimension p from M. Originally developed for differentiable (or, smooth) manifolds, surgery techniques also apply to piecewise linear (PL-) and topological manifolds.

Exotic sphere

In an area of mathematics called differential topology, an exotic sphere is a differentiable manifold M that is homeomorphic but not diffeomorphic to the standard Euclidean n-sphere. That is, M is a sphere from the point of view of all its topological properties, but carrying a smooth structure that is not the familiar one (hence the name "exotic"). The first exotic spheres were constructed by in dimension as -bundles over . He showed that there are at least 7 differentiable structures on the 7-sphere.

MATH-225: Topology

On étudie des notions de topologie générale: unions et quotients d'espaces topologiques; on approfondit les notions de revêtements et de groupe fondamental,et d'attachements de cellules et on démontre

Loading

Loading

We construct a finitely presented, infinite, simple group that acts by homeomorphisms on the circle, but does not admit a non-trivial action by C1-diffeomorphisms on the circle. This is the first such

We show that the finitely generated simple left orderable groups G(rho) constructed by the first two authors in Hyde and Lodha [Finitely generated infinite simple groups of homeomorphisms of the real