**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Concept# Magnetic circuit

Summary

A magnetic circuit is made up of one or more closed loop paths containing a magnetic flux. The flux is usually generated by permanent magnets or electromagnets and confined to the path by magnetic cores consisting of ferromagnetic materials like iron, although there may be air gaps or other materials in the path. Magnetic circuits are employed to efficiently channel magnetic fields in many devices such as electric motors, generators, transformers, relays, lifting electromagnets, SQUIDs, galvanometers, and magnetic recording heads.
The relation between magnetic flux, magnetomotive force, and magnetic reluctance in an unsaturated magnetic circuit can be described by Hopkinson's law, which bears a superficial resemblance to Ohm's law in electrical circuits, resulting in a one-to-one correspondence between properties of a magnetic circuit and an analogous electric circuit. Using this concept the magnetic fields of complex devices such as transformers can be quickly solved using the methods and techniques developed for electrical circuits.
Some examples of magnetic circuits are:
horseshoe magnet with iron keeper (low-reluctance circuit)
horseshoe magnet with no keeper (high-reluctance circuit)
electric motor (variable-reluctance circuit)
some types of pickup cartridge (variable-reluctance circuits)
magnetomotive force
Similar to the way that electromotive force (EMF) drives a current of electrical charge in electrical circuits, magnetomotive force (MMF) 'drives' magnetic flux through magnetic circuits. The term 'magnetomotive force', though, is a misnomer since it is not a force nor is anything moving. It is perhaps better to call it simply MMF. In analogy to the definition of EMF, the magnetomotive force around a closed loop is defined as:
The MMF represents the potential that a hypothetical magnetic charge would gain by completing the loop. The magnetic flux that is driven is not a current of magnetic charge; it merely has the same relationship to MMF that electric current has to EMF.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications (431)

Related people (52)

Related concepts (17)

Related courses (29)

Related MOOCs (13)

Related lectures (238)

Related units (8)

Magnetic reluctance

Magnetic reluctance, or magnetic resistance, is a concept used in the analysis of magnetic circuits. It is defined as the ratio of magnetomotive force (mmf) to magnetic flux. It represents the opposition to magnetic flux, and depends on the geometry and composition of an object. Magnetic reluctance in a magnetic circuit is analogous to electrical resistance in an electrical circuit in that resistance is a measure of the opposition to the electric current. The definition of magnetic reluctance is analogous to Ohm's law in this respect.

Magnetomotive force

In physics, the magnetomotive force (abbreviated mmf or MMF, symbol ) is a quantity appearing in the equation for the magnetic flux in a magnetic circuit, Hopkinson's law. It is the property of certain substances or phenomena that give rise to magnetic fields: where Φ is the magnetic flux and is the reluctance of the circuit. It can be seen that the magnetomotive force plays a role in this equation analogous to the voltage V in Ohm's law, V = IR, since it is the cause of magnetic flux in a magnetic circuit: where N is the number of turns in the coil and I is the electric current through the circuit.

Magnetic core

A magnetic core is a piece of magnetic material with a high magnetic permeability used to confine and guide magnetic fields in electrical, electromechanical and magnetic devices such as electromagnets, transformers, electric motors, generators, inductors, magnetic recording heads, and magnetic assemblies. It is made of ferromagnetic metal such as iron, or ferrimagnetic compounds such as ferrites. The high permeability, relative to the surrounding air, causes the magnetic field lines to be concentrated in the core material.

Circuits magnétiques, aimants permanents, conversion électromécanique, actionneurs.

Circuits magnétiques, aimants permanents, conversion électromécanique, actionneurs.

Principes de fonctionnement, construction, calcul et applications des moteurs electriques.

PHYS-201(d): General physics: electromagnetism

The topics covered by the course are concepts of fluid mechanics, waves, and electromagnetism.

MSE-432: Introduction to magnetic materials in modern technologies

Interactive course addressing bulk and thin-film magnetic materials that provide application-specific functionalities in different modern technologies such as e.g. wind energy harvesting, electric art

EE-382: Electrical machines (for ME)

L'objectif de ce cours est d'acquérir les connaissances de base liées aux machines électriques (conversion électromécanique). Le cours porte sur le circuit magnétique, le transformateur, les machines

Magnetic Circuits: Introduction and Analysis

Introduces magnetic circuits, their equivalence to electrical circuits, and methods for analysis.

Electromagnetic Induction

Explores electromagnetic induction, discussing induced voltage, magnetic flux, and the interaction of current with magnetic fields.

Electric Circuits: Analysis and Applications

Covers the analysis of electric circuits using Kirchhoff's laws and Ohm's law to determine currents, voltages, and power.

Mario Paolone, Vladimir Sovljanski

Electrochemical Impedance Spectroscopy (EIS) and Equivalent Circuit Models (ECMs) are widely used to characterize the impedance and estimate parameters of electrochemical systems such as batteries. We use a generic ECM with ten parameters grouped to model ...

2024The auxiliary power supply for medium voltage converters requires high insulation capability between the source and the load. Inductive power transfer technology, with an air gap between the primary and secondary coil, offers such high insulation capabilit ...

Mario Paolone, André Hodder, Lucien André Félicien Pierrejean, Simone Rametti

Literature on linear induction motors (LIMs) has proposed several approaches to model the behavior of such devices for different applications. In terms of accuracy and fidelity, field analysis-based models are the most relevant. Closed-form or numerical so ...

2024