Summary
In organic chemistry, a carbene is a molecule containing a neutral carbon atom with a valence of two and two unshared valence electrons. The general formula is or where the R represents substituents or hydrogen atoms. The term "carbene" may also refer to the specific compound , also called methylene, the parent hydride from which all other carbene compounds are formally derived. Carbenes are classified as either singlets or triplets, depending upon their electronic structure. Most carbenes are very short lived, although persistent carbenes are known. One well-studied carbene is dichlorocarbene , which can be generated in situ from chloroform and a strong base. The two classes of carbenes are singlet and triplet carbenes. Singlet carbenes are spin-paired. In the language of valence bond theory, the molecule adopts an sp2 hybrid structure. Triplet carbenes have two unpaired electrons. Most carbenes have a nonlinear triplet ground state, except for those with nitrogen, oxygen, or sulphur, and halides substituents bonded to the divalent carbon. Substituents that can donate electron pairs may stabilize the singlet state by delocalizing the pair into an empty p orbital. If the energy of the singlet state is sufficiently reduced it will actually become the ground state. Bond angles are 125–140° for triplet methylene and 102° for singlet methylene (as determined by EPR). For simple hydrocarbons, triplet carbenes usually are 8 kcal/mol (33 kJ/mol) more stable than singlet carbenes. The stabilization is in part attributed to Hund's rule of maximum multiplicity. Strategies for stabilizing triplet carbenes are elusive. The carbene called 9-fluorenylidene has been shown to be a rapidly equilibrating mixture of singlet and triplet states with an approximately 1.1 kcal/mol (4.6 kJ/mol) energy difference. It is, however, debatable whether diaryl carbenes such as the fluorene carbene are true carbenes because the electrons can delocalize to such an extent that they become in fact biradicals.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.