In organic chemistry, the diazo group is an organic moiety consisting of two linked nitrogen atoms (azo, ) at the terminal position. Overall charge-neutral organic compounds containing the diazo group bound to a carbon atom are called diazo compounds or diazoalkanes and are described by the general structural formula . The simplest example of a diazo compound is diazomethane, . Diazo compounds () should not be confused with azo compounds () or with diazonium compounds ().
The electronic structure of diazo compounds is characterized by π electron density delocalized over the α-carbon and two nitrogen atoms, along with an orthogonal π system with electron density delocalized over only the terminal nitrogen atoms. Because all octet rule-satisfying resonance forms of diazo compounds have formal charges, they are members of a class of compounds known as 1,3-dipoles. Some of the most stable diazo compounds are α-diazo-β-diketones and α-diazo-β-diesters, in which the electron density is further delocalized into an electron-withdrawing carbonyl group. In contrast, most diazoalkanes without electron-withdrawing substituents, including diazomethane itself, are explosive. A commercially relevant diazo compound is ethyl diazoacetate (N2CHCOOEt). A group of isomeric compounds with only few similar properties are the diazirines, where the carbon and two nitrogens are linked as a ring.
Four resonance structures can be drawn:
Compounds with the diazo moiety should be distinguished from diazonium compounds, which have the same terminal azo group but bear an overall positive charge, and azo compounds in which the azo group bridges two organic substituents.
Diazo compounds were first produced by Peter Griess who had discovered a versatile new chemical reaction, as detailed in his 1858 paper "Preliminary notice on the influence of nitrous acid on aminonitro- and aminodinitrophenol."
Several methods exist for the preparation of diazo compounds.
Alpha-acceptor-substituted primary aliphatic amines R-CH2-NH2 (R = COOR, CN, CHO, COR) react with nitrous acid to generate the diazo compound.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
To develop basic understanding of the reactivity of aromatic and heteroaromatic compounds. To develop a knowledge of a class of pericyclic reactions. To apply them in the context of the synthesis.
This course will introduce students to the field of organic electronic materials. The goal of this course is to discuss the origin of electronic properties in organic materials, charge transport mecha
The asymmetric synthesis of fine chemicals is a research topic of growing importance for the synthesis of modern materials, drugs and agrochemicals. In this lecture, the concepts of asymmetric catalys
In organic chemistry, a carbene is a molecule containing a neutral carbon atom with a valence of two and two unshared valence electrons. The general formula is or where the R represents substituents or hydrogen atoms. The term "carbene" may also refer to the specific compound , also called methylene, the parent hydride from which all other carbene compounds are formally derived. Carbenes are classified as either singlets or triplets, depending upon their electronic structure.
An ylide or ylid (ˈɪlɪd) is a neutral dipolar molecule containing a formally negatively charged atom (usually a carbanion) directly attached to a heteroatom with a formal positive charge (usually nitrogen, phosphorus or sulfur), and in which both atoms have full octets of electrons. The result can be viewed as a structure in which two adjacent atoms are connected by both a covalent and an ionic bond; normally written X+–Y−. Ylides are thus 1,2-dipolar compounds, and a subclass of zwitterions.
Organic reactions are chemical reactions involving organic compounds. The basic organic chemistry reaction types are addition reactions, elimination reactions, substitution reactions, pericyclic reactions, rearrangement reactions, photochemical reactions and redox reactions. In organic synthesis, organic reactions are used in the construction of new organic molecules. The production of many man-made chemicals such as drugs, plastics, food additives, fabrics depend on organic reactions.
Explores the electronic structure and applications of organic semiconductor materials, covering charge transport, device preparation, and advanced topics.
We report the use of photocatalysis for the homolytic ring-opening of carbonyl cyclopropanes. In contrast to previous studies, our approach does not require a metal cocatalyst or a strong reductant. The carbonyl cyclopropanes can be employed for both [2σ + ...
The first chapter of this thesis describe the development of a general synthesis of ynimines, an under-exploited motif in organic chemistry. In the presence of an inexpensive copper catalyst and 2,2'-biquinoline, reaction of easily accessible O-acyloximes ...
Nitrous oxide (N2O) has gained much interest because of its physiological effects ("laughing gas") and its negative environmental impact ("greenhouse gas", "ozone-depleting substance"): It has a lifetime of more than 100 years in the atmosphere. Its persis ...