Concept

Square cupola

Summary
In geometry, the square cupola, sometimes called lesser dome, is one of the Johnson solids (J_4). It can be obtained as a slice of the rhombicuboctahedron. As in all cupolae, the base polygon has twice as many edges and vertices as the top; in this case the base polygon is an octagon. The following formulae for the circumradius, surface area, volume, and height can be used if all faces are regular, with edge length a: The dual of the square cupola has 8 triangular and 4 kite faces: The crossed square cupola is one of the nonconvex Johnson solid isomorphs, being topologically identical to the convex square cupola. It can be obtained as a slice of the nonconvex great rhombicuboctahedron or quasirhombicuboctahedron, analogously to how the square cupola may be obtained as a slice of the rhombicuboctahedron. As in all cupolae, the base polygon has twice as many edges and vertices as the top; in this case the base polygon is an octagram. It may be seen as a cupola with a retrograde square base, so that the squares and triangles connect across the bases in the opposite way to the square cupola, hence intersecting each other. The square cupola is a component of several nonuniform space-filling lattices: with tetrahedra; with cubes and cuboctahedra; and with tetrahedra, square pyramids and various combinations of cubes, elongated square pyramids and elongated square bipyramids.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.