In mathematics, an implicit curve is a plane curve defined by an implicit equation relating two coordinate variables, commonly x and y. For example, the unit circle is defined by the implicit equation . In general, every implicit curve is defined by an equation of the form
for some function F of two variables. Hence an implicit curve can be considered as the set of zeros of a function of two variables. Implicit means that the equation is not expressed as a solution for either x in terms of y or vice versa.
If is a polynomial in two variables, the corresponding curve is called an algebraic curve, and specific methods are available for studying it.
Plane curves can be represented in Cartesian coordinates (x, y coordinates) by any of three methods, one of which is the implicit equation given above. The graph of a function is usually described by an equation in which the functional form is explicitly stated; this is called an explicit representation. The third essential description of a curve is the parametric one, where the x- and y-coordinates of curve points are represented by
two functions x(t), y(t) both of whose functional forms are explicitly stated, and which are dependent on a common parameter
Examples of implicit curves include:
a line:
a circle:
the semicubical parabola:
Cassini ovals (see diagram),
(see diagram).
The first four examples are algebraic curves, but the last one is not algebraic. The first three examples possess simple parametric representations, which is not true for the fourth and fifth examples. The fifth example shows the possibly complicated geometric structure of an implicit curve.
The implicit function theorem describes conditions under which an equation can be solved implicitly for x and/or y – that is, under which one can validly write or . This theorem is the key for the computation of essential geometric features of the curve: tangents, normals, and curvature. In practice implicit curves have an essential drawback: their visualization is difficult.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The course provides an introduction to the study of curves and surfaces in Euclidean spaces. We will learn how we can apply ideas from differential and integral calculus and linear algebra in order to
Learn to optimize on smooth, nonlinear spaces: Join us to build your foundations (starting at "what is a manifold?") and confidently implement your first algorithm (Riemannian gradient descent).
In mathematics, a level set of a real-valued function f of n real variables is a set where the function takes on a given constant value c, that is: When the number of independent variables is two, a level set is called a level curve, also known as contour line or isoline; so a level curve is the set of all real-valued solutions of an equation in two variables x_1 and x_2. When n = 3, a level set is called a level surface (or isosurface); so a level surface is the set of all real-valued roots of an equation in three variables x_1, x_2 and x_3.
In mathematics, a curve (also called a curved line in older texts) is an object similar to a line, but that does not have to be straight. Intuitively, a curve may be thought of as the trace left by a moving point. This is the definition that appeared more than 2000 years ago in Euclid's Elements: "The [curved] line is [...] the first species of quantity, which has only one dimension, namely length, without any width nor depth, and is nothing else than the flow or run of the point which [...
Ongoing advances in imaging techniques create new demands regarding the analysis of images in medicine and biology. Image segmentation is a key step of many image analysis pipelines and its proper execution is a particularly challenging task. This thesis i ...
Functional time series analysis, whether based on time or frequency domain methodology, has traditionally been carried out under the assumption of complete observation of the constituent series of curves, assumed stationary. Nevertheless, as is often the c ...
The chapter presents an approach for the interactive definition of curves and motion paths based on Gaussian mixture model (GMM) and optimal control. The input of our method is a mixture of multivariate Gaussians defined by the user, whose centers define a ...