NOTOC
In physical cosmology, the inflationary epoch was the period in the evolution of the early universe when, according to inflation theory, the universe underwent an extremely rapid exponential expansion. This rapid expansion increased the linear dimensions of the early universe by a factor of at least 1026 (and possibly a much larger factor), and so increased its volume by a factor of at least 1078. Expansion by a factor of 1026 is equivalent to expanding an object 1 nanometer (10−9 m, about half the width of a molecule of DNA) in length to one approximately 10.6 light years (about 62 trillion miles) long.
Vacuum state is a configuration of quantum fields representing a local minimum (but not necessarily a global minimum) of energy.
Inflationary models propose that at approximately 10−36 seconds after the Big Bang, vacuum state of the Universe was different from the one seen at the present time: the inflationary vacuum had a much higher energy density.
According to general relativity, any vacuum state with non-zero energy density generates a repulsive force that leads to an expansion of space. In inflationary models, early high-energy vacuum state causes a very rapid expansion. This expansion explains various properties of the current universe that are difficult to account for without such an inflationary epoch.
Most inflationary models propose a scalar field called the inflaton field, with properties necessary for having (at least) two vacuum states.
It is not known exactly when the inflationary epoch ended, but it is thought to have been between 10−33 and 10−32 seconds after the Big Bang. The rapid expansion of space meant that any potential elementary particles (or other “unwanted” artifacts, such as topological defects) remaining from time before inflation were now distributed very thinly across the universe.
When the inflaton field reconfigured itself into the low-energy vacuum state we currently observe, the huge difference of potential energy was released in the form of a dense, hot mixture of quarks, anti-quarks and gluons as it entered the electroweak epoch.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course is the basic introduction to modern cosmology. It introduces students to the main concepts and formalism of cosmology, the observational status of Hot Big Bang theory
and discusses major
Discusses the inflationary theory as a solution to initial condition problems in the universe, covering scalar fields, density perturbations, and basic equations.
The chronology of the universe describes the history and future of the universe according to Big Bang cosmology. Research published in 2015 estimates the earliest stages of the universe's existence as taking place 13.8 billion years ago, with an uncertainty of around 21 million years at the 68% confidence level. For the purposes of this summary, it is convenient to divide the chronology of the universe since it originated, into five parts.
The expansion of the universe is the increase in distance between gravitationally unbound parts of the observable universe with time. It is an intrinsic expansion; the universe does not expand "into" anything and does not require space to exist "outside" it. To any observer in the universe, it appears that all but the nearest galaxies (which are bound by gravity) recede at speeds that are proportional to their distance from the observer, on average.
The Higgs boson, sometimes called the Higgs particle, is an elementary particle in the Standard Model of particle physics produced by the quantum excitation of the Higgs field, one of the fields in particle physics theory. In the Standard Model, the Higgs particle is a massive scalar boson with zero spin, even (positive) parity, no electric charge, and no colour charge that couples to (interacts with) mass. It is also very unstable, decaying into other particles almost immediately upon generation.
A metastable cosmic-string network is a generic consequence of many grand unified theories (GUTs) when combined with cosmic inflation. Metastable cosmic strings are not topologically stable, but decay on cosmic time scales due to pair production of GUT mon ...
Optical rest-frame spectroscopic diagnostics are usually employed to distinguish between star formation and active galactic nucleus (AGN) powered emission. However, this method is biased against dusty sources, hampering a complete census of the AGN populat ...
Les Ulis Cedex A2023
In the inhomogeneous Universe, the cosmological conversion of dark photons into ordinary photons (and vice versa) may happen at a great number of resonance redshifts. This alters the CMB observed energy spectrum and degree of small-scale anisotropies. We u ...