Concept# Ideal class group

Summary

In number theory, the ideal class group (or class group) of an algebraic number field K is the quotient group JK/PK where JK is the group of fractional ideals of the ring of integers of K, and PK is its subgroup of principal ideals. The class group is a measure of the extent to which unique factorization fails in the ring of integers of K. The order of the group, which is finite, is called the class number of K.
The theory extends to Dedekind domains and their field of fractions, for which the multiplicative properties are intimately tied to the structure of the class group. For example, the class group of a Dedekind domain is trivial if and only if the ring is a unique factorization domain.
History and origin of the ideal class group
Ideal class groups (or, rather, what were effectively ideal class groups) were studied some time before the idea of an ideal was formulated. These groups appeared in the theory of quadratic forms: in the case of binary integral quadratic f

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications

Loading

Related people

Loading

Related units

Loading

Related concepts

Loading

Related courses

Loading

Related lectures

Loading

Related publications (7)

Related people

Related units

No results

No results

Loading

Loading

Loading

Related concepts (29)

Algebraic number theory

Algebraic number theory is a branch of number theory that uses the techniques of abstract algebra to study the integers, rational numbers, and their generalizations. Number-theoretic questions are e

Algebraic number field

In mathematics, an algebraic number field (or simply number field) is an extension field K of the field of rational numbers \mathbb{Q} such that

Quadratic field

In algebraic number theory, a quadratic field is an algebraic number field of degree two over \mathbf{Q}, the rational numbers.
Every such quadratic field is some \mathbf{Q}(\sqrt

Related courses (5)

MATH-482: Algebraic number theory

Algebraic number theory is the study of the properties of solutions of polynomial equations with integral coefficients; Starting with concrete problems, we then introduce more general notions like algebraic number fields, algebraic integers, units, ideal class groups...

MATH-603: Subconvexity, Periods and Equidistribution

This course is a modern exposition of "Duke's Theorems" which describe the distribution of representations of large integers by a fixed ternary quadratic form. It will be the occasion to introduce the students to the adelic language, the theory of automorphic forms and their associated L-functions

MATH-417: Topics in number theory

This year's topic is "Adelic Number Theory" or how the language of adeles and ideles and harmonic analysis on the corresponding spaces can be used to revisit classical questions in algebraic number theory.

Related lectures (13)

Benjamin Pierre Charles Wesolowski

We construct a verifiable delay function (VDF). A VDF is a function whose evaluation requires running a given number of sequential steps, yet the result can be efficiently verified. They have applications in decentralised systems, such as the generation of trustworthy public randomness in a trustless environment, or resource-efficient blockchains. To construct our VDF, we actually build a trapdoor VDF. A trapdoor VDF is essentially a VDF which can be evaluated efficiently by parties who know a secret (the trapdoor). By setting up this scheme in a way that the trapdoor is unknown (not even by the party running the setup, so that there is no need for a trusted setup environment), we obtain a simple VDF. Our construction is based on groups of unknown order such as an RSA group, or the class group of an imaginary quadratic field. The output of our construction is very short (the result and the proof of correctness are each a single element of the group), and the verification of correctness is very efficient.

Benjamin Pierre Charles Wesolowski

The worst-case hardness of finding short vectors in ideals of cyclotomic number fields (Ideal-SVP) is a central matter in lattice based cryptography. Assuming the worst-case hardness of Ideal-SVP allows to prove the Ring-LWE and Ring-SIS assumptions, and therefore to prove the security of numerous cryptographic schemes and protocols - including key-exchange, digital signatures, public-key encryption and fully-homomorphic encryption. A series of recent works has shown that Principal Ideal-SVP is not always as hard as finding short vectors in general lattices, and some schemes were broken using quantum algorithms - the Soliloquy encryption scheme, Smart-Vercauteren fully homomorphic encryption scheme from PKC 2010, and Gentry-Garg-Halevi cryptographic multilinear-maps from Eurocrypt 2013. Those broken schemes were using a special class of principal ideals, but these works also showed how to solve SVP for principal ideals in the worst-case in quantum polynomial time for an approximation factor of exp((O) over tilde(root n)). This exposed an unexpected hardness gap between general lattices and some structured ones, and called into question the hardness of various problems over structured lattices, such as Ideal-SVP and Ring-LWE. In this work, we generalize the previous result to general ideals. Precisely, we show how to solve the close principal multiple problem (CPM) by exploiting the classical theorem that the class-group is annihilated by the (Galois-module action of) the so-called Stickelberger ideal. Under some plausible number-theoretical hypothesis, our approach provides a close principal multiple in quantum polynomial time. Combined with the previous results, this solves Ideal-SVP in the worst case in quantum polynomial time for an approximation factor of exp((O) over tilde(root n)). Although it does not seem that the security of Ring-LWE based cryptosystems is directly affected, we contribute novel ideas to the crypt-analysis of schemes based on structured lattices. Moreover, our result shows a deepening of the gap between general lattices and structured ones.

Nowadays, one area of research in cryptanalysis is solving the Discrete Logarithm Problem (DLP) in finite groups whose group representation is not yet exploited. For such groups, the best one can do is using a generic method to attack the DLP, the fastest of which remains the Pollard rho algorithm with $r$-adding walks. For the first time, we rigorously analyze the Pollard rho method with $r$-adding walks and prove a complexity bound that differs from the birthday bound observed in practice by a relatively small factor. There exist a multitude of open questions in genus $2$ cryptography. In this case, the DLP is defined in large prime order subgroups of rational points that are situated on the Jacobian of a genus~$2$ curve defined over a large characteristic finite field. We focus on one main topic, namely we present a new efficient algorithm for computing cyclic isogenies between Jacobians. Comparing to previous work that computes non cyclic isogenies in genus~$2$, we need to restrict to certain cases of polarized abelian varieties with specific complex multiplication and real multiplication. The algorithm has multiple applications related to the structure of the isogeny graph in genus~$2$, including random self-reducibility of DLP. It helps support the widespread intuition of choosing \emph{any} curve in a class of curves that satisfy certain public and well studied security parameters. Another topic of interest is generating hyperelliptic curves for cryptographic applications via the CM method that is based on the numerical estimation of the rational Igusa class polynomials. A recent development relates the denominators of the Igusa class polynomials to counting ideal classes in non maximal real quadratic orders whose norm is not prime to the conductor. Besides counting, our new algorithm provides precise representations of such ideal classes for all real quadratic fields and is part of an implementation in Magma of the recent theoretic work in the literature on the topic of denominators.