In mathematics, a graded vector space is a vector space that has the extra structure of a grading or gradation, which is a decomposition of the vector space into a direct sum of vector subspaces, generally indexed by the integers.
For "pure" vector spaces, the concept has been introduced in homological algebra, and it is widely used for graded algebras, which are graded vector spaces with additional structures.
Let be the set of non-negative integers. An -graded vector space, often called simply a graded vector space without the prefix , is a vector space V together with a decomposition into a direct sum of the form
where each is a vector space. For a given n the elements of are then called homogeneous elements of degree n.
Graded vector spaces are common. For example the set of all polynomials in one or several variables forms a graded vector space, where the homogeneous elements of degree n are exactly the linear combinations of monomials of degree n.
The subspaces of a graded vector space need not be indexed by the set of natural numbers, and may be indexed by the elements of any set I. An I-graded vector space V is a vector space together with a decomposition into a direct sum of subspaces indexed by elements i of the set I:
Therefore, an -graded vector space, as defined above, is just an I-graded vector space where the set I is (the set of natural numbers).
The case where I is the ring (the elements 0 and 1) is particularly important in physics. A -graded vector space is also known as a supervector space.
For general index sets I, a linear map between two I-graded vector spaces f : V → W is called a graded linear map if it preserves the grading of homogeneous elements. A graded linear map is also called a homomorphism (or morphism) of graded vector spaces, or homogeneous linear map:
for all i in I.
For a fixed field and a fixed index set, the graded vector spaces form a whose morphisms are the graded linear maps.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In mathematics, in particular in homological algebra, a differential graded algebra is a graded associative algebra with an added chain complex structure that respects the algebra structure. TOC A differential graded algebra (or DG-algebra for short) A is a graded algebra equipped with a map which has either degree 1 (cochain complex convention) or degree −1 (chain complex convention) that satisfies two conditions: A more succinct way to state the same definition is to say that a DG-algebra is a monoid object in the .
In mathematics, the symmetric algebra S(V) (also denoted Sym(V)) on a vector space V over a field K is a commutative algebra over K that contains V, and is, in some sense, minimal for this property. Here, "minimal" means that S(V) satisfies the following universal property: for every linear map f from V to a commutative algebra A, there is a unique algebra homomorphism g : S(V) → A such that f = g ∘ i, where i is the inclusion map of V in S(V).
In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called vectors, may be added together and multiplied ("scaled") by numbers called scalars. Scalars are often real numbers, but can be complex numbers or, more generally, elements of any field. The operations of vector addition and scalar multiplication must satisfy certain requirements, called vector axioms. The terms real vector space and complex vector space are often used to specify the nature of the scalars: real coordinate space or complex coordinate space.
Related courses (32)
Related MOOCs (9)
, , ,
, ,
This paper is devoted to the study of multigraded algebras and multigraded linear series. For an NsNs-graded algebra AA, we define and study its volume function FA:N+s -> RFA:N+s→R, which computes the ...
Wiley2024
,
We establish the Minimal Model Program for arithmetic threefolds whose residue characteristics are greater than five. In doing this, we generalize the theory of global F-regularity to mixed characteristic and identify certain stable sections of adjoint lin ...
Kontsevich and Soibelman reformulated and slightly generalised the topological recursion of [43], seeing it as a quantisation of certain quadratic Lagrangians in T*V for some vector space V. KS topological recursion is a procedure which takes as initial da ...
Le but du cours de physique générale est de donner à l'étudiant les notions de base nécessaires à la compréhension des phénomènes physiques. L'objectif est atteint lorsque l'étudiant est capable de pr