Summary
In mathematics, the symmetric algebra S(V) (also denoted Sym(V)) on a vector space V over a field K is a commutative algebra over K that contains V, and is, in some sense, minimal for this property. Here, "minimal" means that S(V) satisfies the following universal property: for every linear map f from V to a commutative algebra A, there is a unique algebra homomorphism g : S(V) → A such that f = g ∘ i, where i is the inclusion map of V in S(V). If B is a basis of V, the symmetric algebra S(V) can be identified, through a canonical isomorphism, to the polynomial ring K[B], where the elements of B are considered as indeterminates. Therefore, the symmetric algebra over V can be viewed as a "coordinate free" polynomial ring over V. The symmetric algebra S(V) can be built as the quotient of the tensor algebra T(V) by the two-sided ideal generated by the elements of the form x ⊗ y − y ⊗ x. All these definitions and properties extend naturally to the case where V is a module (not necessarily a free one) over a commutative ring. It is possible to use the tensor algebra T(V) to describe the symmetric algebra S(V). In fact, S(V) can be defined as the quotient algebra of T(V) by the two-sided ideal generated by the commutators It is straightforward to verify that the resulting algebra satisfies the universal property stated in the introduction. Because of the universal property of the tensor algebra, a linear map f from V to a commutative algebra A extends to an algebra homomorphism , which factors through S(V) because A is commutative. The extension of f to an algebra homomorphism is unique because V generates A as a K-algebra. This results also directly from a general result of , which asserts that the composition of two left adjoint functors is also a left adjoint functor. Here, the forgetful functor from commutative algebras to vector spaces or modules (forgetting the multiplication) is the composition of the forgetful functors from commutative algebras to associative algebras (forgetting commutativity), and from associative algebras to vectors or modules (forgetting the multiplication).
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (4)
MATH-513: Metric embeddings
The course aims to introduce the basic concepts and results on metric embeddings, or more precisely on approximate embeddings. This area has been under rapid development since the 90's and it has stro
MATH-504: Integer optimisation
The course aims to introduce the basic concepts and results of integer optimization with special emphasis on algorithmic problems on lattices that have proved to be important in theoretical computer s
MATH-334: Representation theory
Study the basics of representation theory of groups and associative algebras.
Show more