An algebraic number is a number that is a root of a non-zero polynomial in one variable with integer (or, equivalently, rational) coefficients. For example, the golden ratio, , is an algebraic number, because it is a root of the polynomial x^2 − x − 1. That is, it is a value for x for which the polynomial evaluates to zero. As another example, the complex number is algebraic because it is a root of x^4 + 4. All integers and rational numbers are algebraic, as are all roots of integers. Real and complex numbers that are not algebraic, such as pi and e, are called transcendental numbers. The set of algebraic numbers is countably infinite and has measure zero in the Lebesgue measure as a subset of the uncountable complex numbers. In that sense, almost all complex numbers are transcendental. All rational numbers are algebraic. Any rational number, expressed as the quotient of an integer a and a (non-zero) natural number b, satisfies the above definition, because x = a/b is the root of a non-zero polynomial, namely bx − a. Quadratic irrational numbers, irrational solutions of a quadratic polynomial ax^2 + bx + c with integer coefficients a, b, and c, are algebraic numbers. If the quadratic polynomial is monic (a = 1), the roots are further qualified as quadratic integers. Gaussian integers, complex numbers a + bi for which both a and b are integers, are also quadratic integers. This is because a + bi and a − bi are the two roots of the quadratic x^2 − 2ax + a^2 + b^2. A constructible number can be constructed from a given unit length using a straightedge and compass. It includes all quadratic irrational roots, all rational numbers, and all numbers that can be formed from these using the basic arithmetic operations and the extraction of square roots. (By designating cardinal directions for +1, −1, +i, and −i, complex numbers such as are considered constructible.) Any expression formed from algebraic numbers using any combination of the basic arithmetic operations and extraction of nth roots gives another algebraic number.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (19)
MATH-482: Number theory I.a - Algebraic number theory
Algebraic number theory is the study of the properties of solutions of polynomial equations with integral coefficients; Starting with concrete problems, we then introduce more general notions like alg
MATH-111(e): Linear Algebra
L'objectif du cours est d'introduire les notions de base de l'algèbre linéaire et ses applications.
MATH-101(g): Analysis I
Étudier les concepts fondamentaux d'analyse et le calcul différentiel et intégral des fonctions réelles d'une variable.
Show more
Related lectures (72)
Algebraic Fields: Transcendence Degree
Explores transcendence degree in algebraic fields and classical analytic functions.
Algebraic Geometry
Covers the fundamentals of algebraic geometry, including algebraic numbers and irreducible polynomials.
Hensel's Lemma and Field Theory
Covers the proof of Hensel's Lemma and a review of field theory, including Newton's approximation and p-adic complex numbers.
Show more
Related publications (41)
Related concepts (24)
Field (mathematics)
In mathematics, a field is a set on which addition, subtraction, multiplication, and division are defined and behave as the corresponding operations on rational and real numbers do. A field is thus a fundamental algebraic structure which is widely used in algebra, number theory, and many other areas of mathematics. The best known fields are the field of rational numbers, the field of real numbers and the field of complex numbers.
Real number
In mathematics, a real number is a number that can be used to measure a continuous one-dimensional quantity such as a distance, duration or temperature. Here, continuous means that pairs of values can have arbitrarily small differences. Every real number can be almost uniquely represented by an infinite decimal expansion. The real numbers are fundamental in calculus (and more generally in all mathematics), in particular by their role in the classical definitions of limits, continuity and derivatives.
Complex number
In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted i, called the imaginary unit and satisfying the equation ; every complex number can be expressed in the form , where a and b are real numbers. Because no real number satisfies the above equation, i was called an imaginary number by René Descartes. For the complex number , a is called the , and b is called the . The set of complex numbers is denoted by either of the symbols or C.
Show more
Related MOOCs (9)
Analyse I
Le contenu de ce cours correspond à celui du cours d'Analyse I, comme il est enseigné pour les étudiantes et les étudiants de l'EPFL pendant leur premier semestre. Chaque chapitre du cours correspond
Analyse I (partie 1) : Prélude, notions de base, les nombres réels
Concepts de base de l'analyse réelle et introduction aux nombres réels.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.