Enstatite is a mineral; the magnesium endmember of the pyroxene silicate mineral series enstatite (MgSiO3) – ferrosilite (FeSiO3). The magnesium rich members of the solid solution series are common rock-forming minerals found in igneous and metamorphic rocks. The intermediate composition, (Mg,Fe)SiO3, has historically been known as hypersthene, although this name has been formally abandoned and replaced by orthopyroxene. When determined petrographically or chemically the composition is given as relative proportions of enstatite (En) and ferrosilite (Fs) (e.g., En80Fs20).
Most natural crystals are orthorhombic (space group Pbca) although three polymorphs are known. The high temperature, low pressure polymorphs are protoenstatite and protoferrosilite (also orthorhombic, space group Pbcn) while the low temperature forms, clinoenstatite and clinoferrosilite, are monoclinic (space group P21/c).
Weathered enstatite with a small amount of iron takes on a submetallic luster and a bronze-like color. This material is termed bronzite, although it is more correctly called altered enstatite.
Bronzite and hypersthene were known long before enstatite, which was first described by G. A. Kenngott in 1855.
An emerald-green variety of enstatite is called chrome-enstatite and is cut as a gemstone. The green color is caused by traces of chromium, hence the varietal name. In addition, bronzite is also sometimes used as a gemstone.
Enstatite and the other orthorhombic pyroxenes are distinguished from those of the monoclinic series by their optical characteristics, such as straight extinction, much weaker double refraction and stronger pleochroism. They also have a prismatic cleavage that is perfect in two directions at 90 degrees. Enstatite is white, gray, greenish, or brown in color; its hardness is 5–6 on the Mohs scale, and its specific gravity is 3.2–3.3. This prismatic form is used in gemstones, and for academic purposes.
Isolated crystals are rare, but orthopyroxene is an essential constituent of various types of igneous rocks and metamorphic rocks.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Calcul différentiel et intégral.
Eléments d'analyse complexe.
Related concepts (11)
,
Covers the fundamental concepts of vector analysis, including the gradient, divergence, and curl operators.
Explores the preparation of silicon material and wafers for photovoltaic applications, covering topics such as the crystalline silicon standard chain and alternative wafering techniques.
Cumulate rocks are igneous rocks formed by the accumulation of crystals from a magma either by settling or floating. Cumulate rocks are named according to their texture; cumulate texture is diagnostic of the conditions of formation of this group of igneous rocks. Cumulates can be deposited on top of other older cumulates of different composition and colour, typically giving the cumulate rock a layered or banded appearance. Cumulate rocks are the typical product of precipitation of solid crystals from a fractionating magma chamber.
Komatiite (koʊˈmɑːtiˌaɪt) is a type of ultramafic mantle-derived volcanic rock defined as having crystallised from a lava of at least 18 wt% magnesium oxide (MgO). It is classified as a 'picritic rock'. Komatiites have low silicon, potassium and aluminium, and high to extremely high magnesium content. Komatiite was named for its type locality along the Komati River in South Africa, and frequently displays spinifex texture composed of large dendritic plates of olivine and pyroxene.
Forsterite (Mg2SiO4; commonly abbreviated as Fo; also known as white olivine) is the magnesium-rich end-member of the olivine solid solution series. It is isomorphous with the iron-rich end-member, fayalite. Forsterite crystallizes in the orthorhombic system (space group Pbnm) with cell parameters a 4.75 Å (0.475 nm), b 10.20 Å (1.020 nm) and c 5.98 Å (0.598 nm). Forsterite is associated with igneous and metamorphic rocks and has also been found in meteorites. In 2005 it was also found in cometary dust returned by the Stardust probe.
We report on a first-principles and experimental study of precipitation in supersaturated solid solutions of Mg-rich Mg–Nd alloys. A cluster expansion Hamiltonian combined with Monte Carlo simulations was used to calculate a metastable HCP temperature-comp ...
Thulium is a heavy rare earth element (REE) whose geochemical behavior is intermediate between Er and Yb, and that is not expected to be decoupled from these elements during accretion of planetary bodies and geological processes. However, irregularities in ...
This study, which complements a first mineralogical work, presents detailed petrographic and chemical data on the sequences of clay infillings commonly found in serpentine veins of reactivated faults from the New Caledonian peridotite formation. Chemical t ...