Mutually orthogonal Latin squaresIn combinatorial mathematics, two Latin squares of the same size (order) are said to be orthogonal if when superimposed the ordered paired entries in the positions are all distinct. A set of Latin squares, all of the same order, all pairs of which are orthogonal is called a set of mutually orthogonal Latin squares. This concept of orthogonality in combinatorics is strongly related to the concept of blocking in statistics, which ensures that independent variables are truly independent with no hidden confounding correlations.
Blocking (statistics)In the statistical theory of the design of experiments, blocking is the arranging of experimental units that are similar to one another in groups (blocks). Blocking can be used to tackle the problem of pseudoreplication. Blocking reduces unexplained variability. Its principle lies in the fact that variability which cannot be overcome (e.g. needing two batches of raw material to produce 1 container of a chemical) is confounded or aliased with a(n) (higher/highest order) interaction to eliminate its influence on the end product.
Latin squareIn combinatorics and in experimental design, a Latin square is an n × n array filled with n different symbols, each occurring exactly once in each row and exactly once in each column. An example of a 3×3 Latin square is The name "Latin square" was inspired by mathematical papers by Leonhard Euler (1707–1783), who used Latin characters as symbols, but any set of symbols can be used: in the above example, the alphabetic sequence A, B, C can be replaced by the integer sequence 1, 2, 3. Euler began the general theory of Latin squares.
Kirkman's schoolgirl problemKirkman's schoolgirl problem is a problem in combinatorics proposed by Thomas Penyngton Kirkman in 1850 as Query VI in The Lady's and Gentleman's Diary (pg.48). The problem states: Fifteen young ladies in a school walk out three abreast for seven days in succession: it is required to arrange them daily so that no two shall walk twice abreast. A solution to this problem is an example of a Kirkman triple system, which is a Steiner triple system having a parallelism, that is, a partition of the blocks of the triple system into parallel classes which are themselves partitions of the points into disjoint blocks.
Projective planeIn mathematics, a projective plane is a geometric structure that extends the concept of a plane. In the ordinary Euclidean plane, two lines typically intersect at a single point, but there are some pairs of lines (namely, parallel lines) that do not intersect. A projective plane can be thought of as an ordinary plane equipped with additional "points at infinity" where parallel lines intersect. Thus any two distinct lines in a projective plane intersect at exactly one point.
Homogeneous relationIn mathematics, a homogeneous relation (also called endorelation) on a set X is a binary relation between X and itself, i.e. it is a subset of the Cartesian product X × X. This is commonly phrased as "a relation on X" or "a (binary) relation over X". An example of a homogeneous relation is the relation of kinship, where the relation is between people. Common types of endorelations include orders, graphs, and equivalences. Specialized studies of order theory and graph theory have developed understanding of endorelations.
Fisher's inequalityFisher's inequality is a necessary condition for the existence of a balanced incomplete block design, that is, a system of subsets that satisfy certain prescribed conditions in combinatorial mathematics. Outlined by Ronald Fisher, a population geneticist and statistician, who was concerned with the design of experiments such as studying the differences among several different varieties of plants, under each of a number of different growing conditions, called blocks. Let: v be the number of varieties of plants; b be the number of blocks.
Configuration (geometry)In mathematics, specifically projective geometry, a configuration in the plane consists of a finite set of points, and a finite arrangement of lines, such that each point is incident to the same number of lines and each line is incident to the same number of points. Although certain specific configurations had been studied earlier (for instance by Thomas Kirkman in 1849), the formal study of configurations was first introduced by Theodor Reye in 1876, in the second edition of his book Geometrie der Lage, in the context of a discussion of Desargues' theorem.
Difference setIn combinatorics, a difference set is a subset of size of a group of order such that every non-identity element of can be expressed as a product of elements of in exactly ways. A difference set is said to be cyclic, abelian, non-abelian, etc., if the group has the corresponding property. A difference set with is sometimes called planar or simple. If is an abelian group written in additive notation, the defining condition is that every non-zero element of can be written as a difference of elements of in exactly ways.
Levi graphIn combinatorial mathematics, a Levi graph or incidence graph is a bipartite graph associated with an incidence structure. From a collection of points and lines in an incidence geometry or a projective configuration, we form a graph with one vertex per point, one vertex per line, and an edge for every incidence between a point and a line. They are named for Friedrich Wilhelm Levi, who wrote about them in 1942. The Levi graph of a system of points and lines usually has girth at least six: Any 4-cycles would correspond to two lines through the same two points.