Carré gréco-latinUn 'carré gréco-latin' ou carré eulérien d'ordre n, sur deux ensembles G et L de chacun n symboles, est un tableau carré de n lignes et n colonnes, contenant les n couples de , et où toute ligne et toute colonne contient exactement une fois chaque élément de L (en première position dans l'un des n couples) et chaque élément de G (en seconde position). Il s'agit de la superposition de deux carrés latins orthogonaux l'un à l'autre. On dit aussi « carré bilatin ».
Blocking (statistics)In the statistical theory of the design of experiments, blocking is the arranging of experimental units that are similar to one another in groups (blocks). Blocking can be used to tackle the problem of pseudoreplication. Blocking reduces unexplained variability. Its principle lies in the fact that variability which cannot be overcome (e.g. needing two batches of raw material to produce 1 container of a chemical) is confounded or aliased with a(n) (higher/highest order) interaction to eliminate its influence on the end product.
Carré latinvignette|Example of TAQ algorithm Un carré latin est un tableau carré de n lignes (donc de n colonnes) remplies de n éléments distincts dont chaque ligne et chaque colonne ne contient qu'un seul exemplaire. L'exemple historique du carré latin est le carré Sator ; la construction de telles curiosités combinatoires se transpose facilement à l'arithmétique en substituant un nombre à une lettre : la plupart du temps, les n éléments utilisés sont les entiers compris entre 0 et n-1.
Problème des 15 écolièresvignette|upright=2| Publication originale du problème. À gauche la couverture du journal, à droite l'énoncé du problème : Query VI. En mathématiques récréatives, le problème des 15 écolières est un problème formulé par Thomas Kirkman en 1850. Il s'énonce comme suit : « Fifteen young ladies in a school walk out three abreast for seven days in succession: it is required to arrange them daily, so that no two shall walk twice abreast.
Plan projectifEn mathématiques, la notion de plan projectif a deux sens distincts, suivant que l'approche est algébrique ou par les axiomes d'incidence entre pointe et droites, l'approche axiomatique donnant une notion qui s'avère un peu plus générale que l'approche algébrique. Un plan projectif en géométrie algébrique est une variété particulière : l'espace projectif de dimension 2. On peut associer un plan projectif à tout corps commutatif (corps des réels, corps des complexes, corps finis) ou non commutatif (quaternions.
Homogeneous relationIn mathematics, a homogeneous relation (also called endorelation) on a set X is a binary relation between X and itself, i.e. it is a subset of the Cartesian product X × X. This is commonly phrased as "a relation on X" or "a (binary) relation over X". An example of a homogeneous relation is the relation of kinship, where the relation is between people. Common types of endorelations include orders, graphs, and equivalences. Specialized studies of order theory and graph theory have developed understanding of endorelations.
Inégalité de FisherEn mathématiques combinatoires, linégalité de Fisher est une condition nécessaire pour l'existence d'un plan en blocs incomplet équilibré, c'est-à-dire d'une famille de parties d'un ensemble qui remplissent certaines conditions prescrites. L'inégalité a été esquissée par Ronald Fisher, généticien et statisticien de la génétique des populations, qui s'intéressait aux plans d'expériences pour l'étude des différences entre plusieurs variétés de plantes dans des conditions de croissance différentes.
Configuration (géométrie)En géométrie, une configuration est la donnée de plusieurs éléments géométriques (points, droites, cercles, plans, angles, vecteurs...) munis de relations associées (appartenance ou incidence, parallélisme, orthogonalité...) Le terme est présent dans l’enseignement des mathématiques en France depuis 1990 en remplacement parfois du mot « figure » mais en distinguant plus spécifiquement le rôle des éléments. Ainsi, on peut considérer par exemple la configuration du théorème de Thalès ou la configuration de Möbius.
Difference setIn combinatorics, a difference set is a subset of size of a group of order such that every non-identity element of can be expressed as a product of elements of in exactly ways. A difference set is said to be cyclic, abelian, non-abelian, etc., if the group has the corresponding property. A difference set with is sometimes called planar or simple. If is an abelian group written in additive notation, the defining condition is that every non-zero element of can be written as a difference of elements of in exactly ways.
Graphe de LeviEn mathématiques, et plus particulièrement en combinatoire, un graphe de Levi ou graphe d'incidence est un graphe biparti associé à une structure d'incidence. À partir d'un ensemble de points et de droites dans une géométrie d'incidence ou une configuration géométrique, on forme un graphe avec un sommet par point, un sommet par droite et une arête pour chaque incidence entre un point et une droite. Ces graphes sont nommés d'après Friedrich Wilhelm Levi, qui les a décrit dans des publications en 1942.