Summary
DISPLAYTITLE:Gq alpha subunit Gq protein alpha subunit is a family of heterotrimeric G protein alpha subunits. This family is also commonly called the Gq/11 (Gq/G11) family or Gq/11/14/15 family to include closely related family members. G alpha subunits may be referred to as Gq alpha, Gαq, or Gqα. Gq proteins couple to G protein-coupled receptors to activate beta-type phospholipase C (PLC-β) enzymes. PLC-β in turn hydrolyzes phosphatidylinositol 4,5-bisphosphate (PIP2) to diacyl glycerol (DAG) and inositol trisphosphate (IP3). IP3 acts as a second messenger to release stored calcium into the cytoplasm, while DAG acts as a second messenger that activates protein kinase C (PKC). In humans, there are four distinct proteins in the Gq alpha subunit family: Gαq is encoded by the gene GNAQ. Gα11 is encoded by the gene GNA11. Gα14 is encoded by the gene GNA14. Gα15 is encoded by the gene GNA15. Heterotrimeric G protein The general function of Gq is to activate intracellular signaling pathways in response to activation of cell surface G protein-coupled receptors (GPCRs). GPCRs function as part of a three-component system of receptor-transducer-effector. The transducer in this system is a heterotrimeric G protein, composed of three subunits: a Gα protein such as Gαq, and a complex of two tightly linked proteins called Gβ and Gγ in a Gβγ complex. When not stimulated by a receptor, Gα is bound to guanosine diphosphate (GDP) and to Gβγ to form the inactive G protein trimer. When the receptor binds an activating ligand outside the cell (such as a hormone or neurotransmitter), the activated receptor acts as a guanine nucleotide exchange factor to promote GDP release from and guanosine triphosphate (GTP) binding to Gα, which drives dissociation of GTP-bound Gα from Gβγ. Recent evidence suggests that Gβγ and Gαq-GTP could maintain partial interaction via the N-α-helix region of Gαq. GTP-bound Gα and Gβγ are then freed to activate their respective downstream signaling enzymes.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood