Decision analysis (DA) is the discipline comprising the philosophy, methodology, and professional practice necessary to address important decisions in a formal manner. Decision analysis includes many procedures, methods, and tools for identifying, clearly representing, and formally assessing important aspects of a decision; for prescribing a recommended course of action by applying the maximum expected-utility axiom to a well-formed representation of the decision; and for translating the formal representation of a decision and its corresponding recommendation into insight for the decision maker, and other corporate and non-corporate stakeholders.
In 1931, mathematical philosopher Frank Ramsey pioneered the idea of subjective probability as a representation of an individual’s beliefs or uncertainties. Then, in the 1940s, mathematician John von Neumann and economist Oskar Morgenstern developed an axiomatic basis for utility theory as a way of expressing an individual’s preferences over uncertain outcomes. (This is in contrast to social-choice theory, which addresses the problem of deriving group preferences from individual preferences.) Statistician Leonard Jimmie Savage then developed an alternate axiomatic framework for decision analysis in the early 1950s. The resulting expected-utility theory provides a complete axiomatic basis for decision making under uncertainty.
Once these basic theoretical developments had been established, the methods of decision analysis were then further codified and popularized, becoming widely taught (e.g., in business schools and departments of industrial engineering). A brief and highly accessible introductory text was published in 1968 by decision theorist Howard Raiffa of the Harvard Business School. Subsequently, in 1976, Ralph Keeney and Howard Raiffa extended the basics of utility theory to provide a comprehensive methodology for handling decisions involving trade-offs between multiple objectives.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course is devoted to the psychology of risk (How do people make decisions in real-life situations characterized by risk and/or uncertainty?) and to risk competencies (How to make better decisions
This course introduces the theory and applications of optimization. We develop tools and concepts of optimization and decision analysis that enable managers in manufacturing, service operations, marke
L'étudiant.e applique les compétences acquises au cours de ses études dans une recherche effectuée dans l'un des laboratoires de la section de physique sous l'encadrement d'un.e enseignant.e de la sec
An influence diagram (ID) (also called a relevance diagram, decision diagram or a decision network) is a compact graphical and mathematical representation of a decision situation. It is a generalization of a Bayesian network, in which not only probabilistic inference problems but also decision making problems (following the maximum expected utility criterion) can be modeled and solved. ID was first developed in the mid-1970s by decision analysts with an intuitive semantic that is easy to understand.
Decision intelligence is an engineering discipline that augments data science with theory from social science, decision theory, and managerial science. Its application provides a framework for best practices in organizational decision-making and processes for applying machine learning at scale. The basic idea is that decisions are based on our understanding of how actions lead to outcomes. Decision intelligence is a discipline for analyzing this chain of cause and effect, and decision modeling is a visual language for representing these chains.
A decision tree is a decision support hierarchical model that uses a tree-like model of decisions and their possible consequences, including chance event outcomes, resource costs, and utility. It is one way to display an algorithm that only contains conditional control statements. Decision trees are commonly used in operations research, specifically in decision analysis, to help identify a strategy most likely to reach a goal, but are also a popular tool in machine learning.
We consider optimal regimes for algorithm-assisted human decision-making. Such regimes are decision functions of measured pre-treatment variables and, by leveraging natural treatment values, enjoy a superoptimality property whereby they are guaranteed to o ...
A shift from fossil-based energy and products to more sustainable alternatives is essential to reduce greenhouse gas emissions and associated climate change impacts. Biomass represents a promising alternative for providing fuels and carbon-based products w ...
EPFL2023
, , ,
We introduce contextual stochastic bilevel optimization (CSBO) -- a stochastic bilevel optimization framework with the lower-level problem minimizing an expectation conditioned on some contextual information and the upper-level decision variable. This fram ...