Stellar rotation is the angular motion of a star about its axis. The rate of rotation can be measured from the spectrum of the star, or by timing the movements of active features on the surface.
The rotation of a star produces an equatorial bulge due to centrifugal force. As stars are not solid bodies, they can also undergo differential rotation. Thus the equator of the star can rotate at a different angular velocity than the higher latitudes. These differences in the rate of rotation within a star may have a significant role in the generation of a stellar magnetic field.
The magnetic field of a star interacts with the stellar wind. As the wind moves away from the star its rate of angular velocity slows. The magnetic field of the star interacts with the wind, which applies a drag to the stellar rotation. As a result, angular momentum is transferred from the star to the wind, and over time this gradually slows the star's rate of rotation.
Unless a star is being observed from the direction of its pole, sections of the surface have some amount of movement toward or away from the observer. The component of movement that is in the direction of the observer is called the radial velocity. For the portion of the surface with a radial velocity component toward the observer, the radiation is shifted to a higher frequency because of Doppler shift. Likewise the region that has a component moving away from the observer is shifted to a lower frequency. When the absorption lines of a star are observed, this shift at each end of the spectrum causes the line to broaden. However, this broadening must be carefully separated from other effects that can increase the line width.
The component of the radial velocity observed through line broadening depends on the inclination of the star's pole to the line of sight. The derived value is given as , where is the rotational velocity at the equator and is the inclination. However, is not always known, so the result gives a minimum value for the star's rotational velocity.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Explores the composition, origin, and tail formation of comets, shedding light on the forces shaping their trajectories and their relevance to star formation.
This glossary of astronomy is a list of definitions of terms and concepts relevant to astronomy and cosmology, their sub-disciplines, and related fields. Astronomy is concerned with the study of celestial objects and phenomena that originate outside the atmosphere of Earth. The field of astronomy features an extensive vocabulary and a significant amount of jargon.
Achernar is the brightest star in the constellation of Eridanus, and the ninth-brightest in the night sky. It has the Bayer designation Alpha Eridani, which is Latinized from α Eridani and abbreviated Alpha Eri or α Eri. The name Achernar applies to the primary component of a binary system. The two components are designated Alpha Eridani A (the primary) and B (the secondary), with the latter known informally as Achernar B. As determined by the Hipparcos astrometry satellite, this system is located at a distance of approximately from the Sun.
Canopus is the brightest star in the southern constellation of Carina and the second-brightest star in the night sky. It is also designated α Carinae, which is Latinised to Alpha Carinae. With a visual apparent magnitude of −0.74, it is outshone only by Sirius. Located around 310light-years from the Sun, Canopus is a bright giant of spectral type A9, so it is essentially white when seen with the naked eye. It has a luminosity over 10,000 times the luminosity of the Sun, is eight times as massive, and has expanded to 71 times the Sun's radius.
We report on HD 213258, an Ap star that we recently identified as presenting a unique combination of rare, remarkable properties. Our study of this star is based on ESPaDOnS Stokes I and V data obtained at seven epochs spanning a time interval slightly sho ...
Diffuse interstellar bands (DIBs) are absorption features seen in optical and infrared spectra of stars and extragalactic objects that are probably caused by large and complex molecules in the galactic interstellar medium (ISM). Here we investigate the Gal ...
Context. The third Gaia Data Release (DR3) provided photometric time series of more than 2 million long-period variable (LPV) candidates. Anticipating the publication of full radial-velocity data planned with Data Release 4, this Focused Product Release (F ...