In concurrent programming, an operation (or set of operations) is linearizable if it consists of an ordered list of invocation and response events, that may be extended by adding response events such that: The extended list can be re-expressed as a sequential history (is serializable). That sequential history is a subset of the original unextended list. Informally, this means that the unmodified list of events is linearizable if and only if its invocations were serializable, but some of the responses of the serial schedule have yet to return. In a concurrent system, processes can access a shared object at the same time. Because multiple processes are accessing a single object, a situation may arise in which while one process is accessing the object, another process changes its contents. Making a system linearizable is one solution to this problem. In a linearizable system, although operations overlap on a shared object, each operation appears to take place instantaneously. Linearizability is a strong correctness condition, which constrains what outputs are possible when an object is accessed by multiple processes concurrently. It is a safety property which ensures that operations do not complete unexpectedly or unpredictably. If a system is linearizable it allows a programmer to reason about the system. Linearizability was first introduced as a consistency model by Herlihy and Wing in 1987. It encompassed more restrictive definitions of atomic, such as "an atomic operation is one which cannot be (or is not) interrupted by concurrent operations", which are usually vague about when an operation is considered to begin and end. An atomic object can be understood immediately and completely from its sequential definition, as a set of operations run in parallel which always appear to occur one after the other; no inconsistencies may emerge. Specifically, linearizability guarantees that the invariants of a system are observed and preserved by all operations: if all operations individually preserve an invariant, the system as a whole will.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (7)
CS-307: Introduction to multiprocessor architecture
Multiprocessors are a core component in all types of computing infrastructure, from phones to datacenters. This course will build on the prerequisites of processor design and concurrency to introduce
CS-453: Concurrent computing
With the advent of modern architectures, it becomes crucial to master the underlying algorithmics of concurrency. The objective of this course is to study the foundations of concurrent algorithms and
CS-471: Advanced multiprocessor architecture
Multiprocessors are basic building blocks for all computer systems. This course covers the architecture and organization of modern multiprocessors, prevalent accelerators (e.g., GPU, TPU), and datacen
Show more
Related lectures (47)
Money Transfers: Synchronized Global Log
Explains the synchronized approach to log money transfers in an online banking system.
Locks: Implementing Concurrency Mechanisms
Covers the implementation of locks using compareAndSet and the concept of fair locks.
Synchronization Primitives
Explores the design of synchronization primitives and concurrent data structures using atomic instructions.
Show more
Related publications (78)

WarpAttack: Bypassing CFI through Compiler-Introduced Double-Fetches

Mathias Josef Payer, Flavio Toffalini, Luca Di Bartolomeo, Jianhao Xu

Code-reuse attacks are dangerous threats that attracted the attention of the security community for years. These attacks aim at corrupting important control-flow transfers for taking control of a process without injecting code. Nowadays, the combinations o ...
IEEE COMPUTER SOC2023

Efficient Multi-Word Compare and Swap

Rachid Guerraoui, Mihail Igor Zablotchi

Atomic lock-free multi-word compare-and-swap (MCAS) is a powerful tool for designing concurrent algorithms. Yet, its widespread usage has been limited because lock-free implementations of MCAS make heavy use of expensive compare-and-swap (CAS) instructions ...
Schloss Dagstuhl, Leibniz-Zentrum2020

PaRiS: Causally Consistent Transactions with Non-blocking Reads and Partial Replication

Willy Zwaenepoel, Diego Didona, Kristina Spirovska

Geo-replicated data platforms are at the backbone of several large-scale online services. Transactional Causal Consistency (TCC) is an attractive consistency level for building such platforms. TCC avoids many anomalies of eventual consistency, eschews the ...
2019
Show more
Related concepts (19)
Concurrent computing
Concurrent computing is a form of computing in which several computations are executed concurrently—during overlapping time periods—instead of sequentially—with one completing before the next starts. This is a property of a system—whether a program, computer, or a network—where there is a separate execution point or "thread of control" for each process. A concurrent system is one where a computation can advance without waiting for all other computations to complete. Concurrent computing is a form of modular programming.
Consistency model
In computer science, a consistency model specifies a contract between the programmer and a system, wherein the system guarantees that if the programmer follows the rules for operations on memory, memory will be consistent and the results of reading, writing, or updating memory will be predictable. Consistency models are used in distributed systems like distributed shared memory systems or distributed data stores (such as s, databases, optimistic replication systems or web caching).
Atomicity (database systems)
In database systems, atomicity (ˌætəˈmɪsəti; from átomos) is one of the ACID (Atomicity, Consistency, Isolation, Durability) transaction properties. An atomic transaction is an indivisible and irreducible series of database operations such that either all occurs, or nothing occurs. A guarantee of atomicity prevents updates to the database occurring only partially, which can cause greater problems than rejecting the whole series outright. As a consequence, the transaction cannot be observed to be in progress by another database client.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.