In mechanics, virtual work arises in the application of the principle of least action to the study of forces and movement of a mechanical system. The work of a force acting on a particle as it moves along a displacement is different for different displacements. Among all the possible displacements that a particle may follow, called virtual displacements, one will minimize the action. This displacement is therefore the displacement followed by the particle according to the principle of least action. The work of a force on a particle along a virtual displacement is known as the virtual work.
Historically, virtual work and the associated calculus of variations were formulated to analyze systems of rigid bodies, but they have also been developed for the study of the mechanics of deformable bodies.
The principle of virtual work had always been used in some form since antiquity in the study of statics. It was used by the Greeks, medieval Arabs and Latins, and Renaissance Italians as "the law of lever". The idea of virtual work was invoked by many notable physicists of the 17th century, such as Galileo, Descartes, Torricelli, Wallis, and Huygens, in varying degrees of generality, when solving problems in statics. Working with Leibnizian concepts, Johann Bernoulli systematized the virtual work principle and made explicit the concept of infinitesimal displacement. He was able to solve problems for both rigid bodies as well as fluids. Bernoulli's version of virtual work law appeared in his letter to Pierre Varignon in 1715, which was later published in Varignon's second volume of Nouvelle mécanique ou Statique in 1725. This formulation of the principle is today known as the principle of virtual velocities and is commonly considered as the prototype of the contemporary virtual work principles. In 1743 D'Alembert published his Traité de Dynamique where he applied the principle of virtual work, based on Bernoulli's work, to solve various problems in dynamics. His idea was to convert a dynamical problem into static problem by introducing inertial force.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In physics, Lagrangian mechanics is a formulation of classical mechanics founded on the stationary-action principle (also known as the principle of least action). It was introduced by the Italian-French mathematician and astronomer Joseph-Louis Lagrange in his 1788 work, Mécanique analytique. Lagrangian mechanics describes a mechanical system as a pair consisting of a configuration space and a smooth function within that space called a Lagrangian. For many systems, where and are the kinetic and potential energy of the system, respectively.
In engineering, a mechanism is a device that transforms input forces and movement into a desired set of output forces and movement. Mechanisms generally consist of moving components which may include: Gears and gear trains; Belts and chain drives; Cams and followers; Linkages; Friction devices, such as brakes or clutches; Structural components such as a frame, fasteners, bearings, springs, or lubricants; Various machine elements, such as splines, pins, or keys.
In physics, the degrees of freedom (DOF) of a mechanical system is the number of independent parameters that define its configuration or state. It is important in the analysis of systems of bodies in mechanical engineering, structural engineering, aerospace engineering, robotics, and other fields. The position of a single railcar (engine) moving along a track has one degree of freedom because the position of the car is defined by the distance along the track.
La mécanique des milieux continus, essentielle à la compréhension du travail de l'ingénieur civil, est abordée dans ce cours. Ce cours couvre les notions de contraintes et déformations, les grands pri
L'objectif de ce cours est d'apprendre à réaliser de manière rigoureuse et critique des analyses par éléments finis de problèmes concrets en mécanique des solides à l'aide d'un logiciel CAE moderne.
The student will acquire the basis for the analysis of static structures and deformation of simple structural elements. The focus is given to problem-solving skills in the context of engineering desig
Covers the generalization of the model problem in structural mechanics and explores equilibrium equations and the link between normal force and displacement.
This work studies the nearshore hydrodynamics of a shallow turbulent flow entering a laterally unconfined quiescent ambient with a sloping bottom boundary. Examples of such flow are neutrally buoyant ebb tidal jets and hyperpycnal river plumes entering ope ...
This study aims to explore the possibility of estimating a multitude of kinematic and dynamic quantities using subject-specific musculoskeletal models in real-time. The framework was designed to operate with marker-based and inertial measurement units enab ...
Despite the fact that the gene responsible for Huntington's disease (HD) is known, we still do not understand the underlying mechanisms leading to neurodegeneration and death. Identifying and understanding the mechanisms controlling mutant huntingtin (mHtt ...