In engineering, a mechanism is a device that transforms input forces and movement into a desired set of output forces and movement. Mechanisms generally consist of moving components which may include:
Gears and gear trains;
Belts and chain drives;
Cams and followers;
Linkages;
Friction devices, such as brakes or clutches;
Structural components such as a frame, fasteners, bearings, springs, or lubricants;
Various machine elements, such as splines, pins, or keys.
The German scientist Franz Reuleaux defines machine as "a combination of resistant bodies so arranged that by their means the mechanical forces of nature can be compelled to do work accompanied by certain determinate motion". In this context, his use of machine is generally interpreted to mean mechanism.
The combination of force and movement defines power, and a mechanism manages power to achieve a desired set of forces and movement.
A mechanism is usually a piece of a larger process, known as a mechanical system or machine. Sometimes an entire machine may be referred to as a mechanism; examples are the steering mechanism in a car, or the winding mechanism of a wristwatch.
However, typically, a set of multiple mechanisms is called a machine.
Kinematic pair
From the time of Archimedes to the Renaissance, mechanisms were viewed as constructed from simple machines, such as the lever, pulley, screw, wheel and axle, wedge, and inclined plane. Reuleaux focused on bodies, called links, and the connections between these bodies, called kinematic pairs, or joints.
To use geometry to study the movement of a mechanism, its links are modelled as rigid bodies. This means that distances between points in a link are assumed to not change as the mechanism moves—that is, the link does not flex. Thus, the relative movement between points in two connected links is considered to result from the kinematic pair that joins them.
Kinematic pairs, or joints, are considered to provide ideal constraints between two links, such as the constraint of a single point for pure rotation, or the constraint of a line for pure sliding, as well as pure rolling without slipping and point contact with slipping.