In mathematics specifically, in the theory of stochastic processes Doob's martingale convergence theorems are a collection of results on the limits of supermartingales, named after the American mathematician Joseph L. Doob. Informally, the martingale convergence theorem typically refers to the result that any supermartingale satisfying a certain boundedness condition must converge. One may think of supermartingales as the random variable analogues of non-increasing sequences; from this perspective, the martingale convergence theorem is a random variable analogue of the monotone convergence theorem, which states that any bounded monotone sequence converges. There are symmetric results for submartingales, which are analogous to non-decreasing sequences.
A common formulation of the martingale convergence theorem for discrete-time martingales is the following. Let be a supermartingale. Suppose that the supermartingale is bounded in the sense that
where is the negative part of , defined by . Then the sequence converges almost surely to a random variable with finite expectation.
There is a symmetric statement for submartingales with bounded expectation of the positive part. A supermartingale is a stochastic analogue of a non-increasing sequence, and the condition of the theorem is analogous to the condition in the monotone convergence theorem that the sequence be bounded from below. The condition that the martingale is bounded is essential; for example, an unbiased random walk is a martingale but does not converge.
As intuition, there are two reasons why a sequence may fail to converge. It may go off to infinity, or it may oscillate. The boundedness condition prevents the former from happening. The latter is impossible by a "gambling" argument. Specifically, consider a stock market game in which at time , the stock has price . There is no strategy for buying and selling the stock over time, always holding a non-negative amount of stock, which has positive expected profit in this game.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Introduction à la théorie des martingales à temps discret, en particulier aux théorèmes de convergence et d'arrêt. Application aux processus de branchement. Introduction au mouvement brownien et étude
In this course, various aspects of probability theory are considered. The first part is devoted to the main theorems in the field (law of large numbers, central limit theorem, concentration inequaliti
This course gives an introduction to probability theory and stochastic calculus in discrete and continuous time. We study fundamental notions and techniques necessary for applications in finance such
Explores the optional stopping theorem for martingales and stepping times, emphasizing its applications and implications.
Explores three stopping theorems in martingales and Brownian motion.
Explores martingales, Brownian motion, submartingales, descents monitoring, and convergence theorems with practical examples.
In probability theory, in particular in the study of stochastic processes, a stopping time (also Markov time, Markov moment, optional stopping time or optional time) is a specific type of “random time”: a random variable whose value is interpreted as the time at which a given stochastic process exhibits a certain behavior of interest. A stopping time is often defined by a stopping rule, a mechanism for deciding whether to continue or stop a process on the basis of the present position and past events, and which will almost always lead to a decision to stop at some finite time.
In probability theory, a martingale is a sequence of random variables (i.e., a stochastic process) for which, at a particular time, the conditional expectation of the next value in the sequence is equal to the present value, regardless of all prior values. Originally, martingale referred to a class of betting strategies that was popular in 18th-century France. The simplest of these strategies was designed for a game in which the gambler wins their stake if a coin comes up heads and loses it if the coin comes up tails.
A constrained informationally efficient market is defined as one in which the price process arises as the outcome of some equilibrium where agents face restrictions on trade. This paper investigates the case of short sale constraints, a setting which, desp ...
Consider a discrete-time martingale, and let V-2 be its normalized quadratic variation. As V-2 approaches 1, and provided that some Lindeberg condition is satisfied, the distribution of the rescaled martingale approaches the Gaussian distribution. For any ...
The subject of the present thesis is an optimal prediction problem concerning the ultimate maximum of a stable Lévy process over a finite interval of time. Such "optimal prediction" problems are of both theoretical and practical interest, in particular the ...