In probability theory, a martingale is a sequence of random variables (i.e., a stochastic process) for which, at a particular time, the conditional expectation of the next value in the sequence is equal to the present value, regardless of all prior values. Originally, martingale referred to a class of betting strategies that was popular in 18th-century France. The simplest of these strategies was designed for a game in which the gambler wins their stake if a coin comes up heads and loses it if the coin comes up tails. The strategy had the gambler double their bet after every loss so that the first win would recover all previous losses plus win a profit equal to the original stake. As the gambler's wealth and available time jointly approach infinity, their probability of eventually flipping heads approaches 1, which makes the martingale betting strategy seem like a sure thing. However, the exponential growth of the bets eventually bankrupts its users due to finite bankrolls. Stopped Brownian motion, which is a martingale process, can be used to model the trajectory of such games. The concept of martingale in probability theory was introduced by Paul Lévy in 1934, though he did not name it. The term "martingale" was introduced later by , who also extended the definition to continuous martingales. Much of the original development of the theory was done by Joseph Leo Doob among others. Part of the motivation for that work was to show the impossibility of successful betting strategies in games of chance. A basic definition of a discrete-time martingale is a discrete-time stochastic process (i.e., a sequence of random variables) X1, X2, X3, ... that satisfies for any time n, That is, the conditional expected value of the next observation, given all the past observations, is equal to the most recent observation. More generally, a sequence Y1, Y2, Y3 ... is said to be a martingale with respect to another sequence X1, X2, X3 ...

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (13)
MATH-470: Martingales in financial mathematics
The aim of the course is to apply the theory of martingales in the context of mathematical finance. The course provides a detailed study of the mathematical ideas that are used in modern financial mat
COM-417: Advanced probability and applications
In this course, various aspects of probability theory are considered. The first part is devoted to the main theorems in the field (law of large numbers, central limit theorem, concentration inequaliti
MATH-431: Theory of stochastic calculus
Introduction to the mathematical theory of stochastic calculus: construction of stochastic Ito integral, proof of Ito formula, introduction to stochastic differential equations, Girsanov theorem and F
Show more
Related publications (25)

Synthetic Generation of Activity-related data

Quentin Philippe Bochud

The field of synthetic data is more and more present in our everyday life. The transportation domain is particularly interested in improving the methods for the generation of synthetic data in order to address the privacy and availability issue of real dat ...
2023

Essays in Empirical Asset Pricing

Alexis Arilès Marchal

This thesis consists of three applications of machine learning techniques to empirical asset pricing.In the first part, which is co-authored work with Oksana Bashchenko, we develop a new method that detects jumps nonparametrically in financial time series ...
EPFL2022

Polynomial Jump-Diffusion Models

Damir Filipovic, Martin Larsson

We develop a comprehensive mathematical framework for polynomial jump-diffusions in a semimartingale context, which nest affine jump-diffusions and have broad applications in finance. We show that the polynomial property is preserved under polynomial trans ...
2020
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.