In mathematics specifically, in the theory of stochastic processes Doob's martingale convergence theorems are a collection of results on the limits of supermartingales, named after the American mathematician Joseph L. Doob. Informally, the martingale convergence theorem typically refers to the result that any supermartingale satisfying a certain boundedness condition must converge. One may think of supermartingales as the random variable analogues of non-increasing sequences; from this perspective, the martingale convergence theorem is a random variable analogue of the monotone convergence theorem, which states that any bounded monotone sequence converges. There are symmetric results for submartingales, which are analogous to non-decreasing sequences.
A common formulation of the martingale convergence theorem for discrete-time martingales is the following. Let be a supermartingale. Suppose that the supermartingale is bounded in the sense that
where is the negative part of , defined by . Then the sequence converges almost surely to a random variable with finite expectation.
There is a symmetric statement for submartingales with bounded expectation of the positive part. A supermartingale is a stochastic analogue of a non-increasing sequence, and the condition of the theorem is analogous to the condition in the monotone convergence theorem that the sequence be bounded from below. The condition that the martingale is bounded is essential; for example, an unbiased random walk is a martingale but does not converge.
As intuition, there are two reasons why a sequence may fail to converge. It may go off to infinity, or it may oscillate. The boundedness condition prevents the former from happening. The latter is impossible by a "gambling" argument. Specifically, consider a stock market game in which at time , the stock has price . There is no strategy for buying and selling the stock over time, always holding a non-negative amount of stock, which has positive expected profit in this game.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Introduction à la théorie des martingales à temps discret, en particulier aux théorèmes de convergence et d'arrêt. Application aux processus de branchement. Introduction au mouvement brownien et étude
In this course, various aspects of probability theory are considered. The first part is devoted to the main theorems in the field (law of large numbers, central limit theorem, concentration inequaliti
This course gives an introduction to probability theory and stochastic calculus in discrete and continuous time. We study fundamental notions and techniques necessary for applications in finance such
vignette|Temps d'impact et temps d'arrêt de trois échantillons de mouvement brownien. En théorie des probabilités, en particulier dans l'étude des processus stochastiques, un temps d'arrêt (également appelé temps d'arrêt optionnel, et correspondant à un temps de Markov ou moment de Markov défini) est une variable aléatoire dont la valeur est interprétée comme le moment auquel le comportement d'un processus stochastique donné présente un certain intérêt.
Une martingale est une séquence de variables aléatoires (autrement dit un processus stochastique), telles que l'espérance mathématique à l'instant , conditionnellement à l'information disponible à un moment préalable , notée , vaut (avec ). En particulier, dans un processus discret (t entier), . Une martingale peut modéliser les gains / pertes accumulés par un joueur au cours de répétitions indépendantes d'un jeu de hasard à espérance nulle (même si le joueur s'autorise à modifier sa mise en fonction des gains passés), d'où l'emprunt du terme martingale au monde du jeu.
Explore le théorème optionnel d'arrêt pour martingales et les temps de pas, en mettant l'accent sur ses applications et implications.
Explore trois théorèmes d'arrêt dans martingales et Brownian motion.
Explore les théorèmes de martingales, de mouvement brownien, de submartingales, de surveillance des descentes et de convergence avec des exemples pratiques.
Consider a discrete-time martingale, and let V-2 be its normalized quadratic variation. As V-2 approaches 1, and provided that some Lindeberg condition is satisfied, the distribution of the rescaled martingale approaches the Gaussian distribution. For any ...
Int Statistical Inst2013
The subject of the present thesis is an optimal prediction problem concerning the ultimate maximum of a stable Lévy process over a finite interval of time. Such "optimal prediction" problems are of both theoretical and practical interest, in particular the ...
A constrained informationally efficient market is defined as one in which the price process arises as the outcome of some equilibrium where agents face restrictions on trade. This paper investigates the case of short sale constraints, a setting which, desp ...