In organic chemistry, Zaitsev's rule (or Saytzeff's rule, Saytzev's rule) is an empirical rule for predicting the favored alkene product(s) in elimination reactions. While at the University of Kazan, Russian chemist Alexander Zaitsev studied a variety of different elimination reactions and observed a general trend in the resulting alkenes. Based on this trend, Zaitsev proposed that the alkene formed in greatest amount is that which corresponded to removal of the hydrogen from the alpha-carbon having the fewest hydrogen substituents. For example, when 2-iodobutane is treated with alcoholic potassium hydroxide (KOH), but-2-ene is the major product and but-1-ene is the minor product. More generally, Zaitsev's rule predicts that in an elimination reaction the most substituted product will be the most stable, and therefore the most favored. The rule makes no generalizations about the stereochemistry of the newly formed alkene, but only the regiochemistry of the elimination reaction. While effective at predicting the favored product for many elimination reactions, Zaitsev's rule is subject to many exceptions. Many of them include exceptions under Hofmann product (analogous to Zaitsev product). These include compounds having quaternary nitrogen and leaving groups like NR3+, SO3H, etc. In these eliminations the Hofmann product is preferred. In case the leaving group is halogens, except fluorine; others give the Zaitsev product. Alexander Zaitsev first published his observations regarding the products of elimination reactions in Justus Liebigs Annalen der Chemie in 1875. Although the paper contained some original research done by Zaitsev's students, it was largely a literature review and drew heavily upon previously published work. In it, Zaitsev proposed a purely empirical rule for predicting the favored regiochemistry in the dehydrohalogenation of alkyl iodides, though it turns out that the rule is applicable to a variety of other elimination reactions as well.
Qian Wang, Jieping Zhu, Qiang Feng
Qian Wang, Jieping Zhu, Takuji Fujii, Simone Gallarati