Summary
In physics, the gyromagnetic ratio (also sometimes known as the magnetogyric ratio in other disciplines) of a particle or system is the ratio of its magnetic moment to its angular momentum, and it is often denoted by the symbol γ, gamma. Its SI unit is the radian per second per tesla (rad⋅s−1⋅T−1) or, equivalently, the coulomb per kilogram (C⋅kg−1). The term "gyromagnetic ratio" is often used as a synonym for a different but closely related quantity, the g-factor. The g-factor only differs from the gyromagnetic ratio in being dimensionless. Consider a nonconductive charged body rotating about an axis of symmetry. According to the laws of classical physics, it has both a magnetic dipole moment due to the movement of charge and an angular momentum due to the movement of mass arising from its rotation. It can be shown that as long as its charge and mass density and flow are distributed identically and rotationally symmetric, its gyromagnetic ratio is where is its charge and is its mass. The derivation of this relation is as follows. It suffices to demonstrate this for an infinitesimally narrow circular ring within the body, as the general result then follows from an integration. Suppose the ring has radius r, area A = πr2, mass m, charge q, and angular momentum L = mvr. Then the magnitude of the magnetic dipole moment is An isolated electron has an angular momentum and a magnetic moment resulting from its spin. While an electron's spin is sometimes visualized as a literal rotation about an axis, it cannot be attributed to mass distributed identically to the charge. The above classical relation does not hold, giving the wrong result by the absolute value of the electron's g-factor, which is denoted ge: where μB is the Bohr magneton. The gyromagnetic ratio due to electron spin is twice that due to the orbiting of an electron. In the framework of relativistic quantum mechanics, where is the fine-structure constant. Here the small corrections to the relativistic result g = 2 come from the quantum field theory calculations of the anomalous magnetic dipole moment.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.