Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
In the theory of decision making, the analytic hierarchy process (AHP), also analytical hierarchy process, is a structured technique for organizing and analyzing complex decisions, based on mathematics and psychology. It was developed by Thomas L. Saaty in the 1970s; Saaty partnered with Ernest Forman to develop Expert Choice software in 1983, and AHP has been extensively studied and refined since then. It represents an accurate approach to quantifying the weights of decision criteria. Individual experts’ experiences are utilized to estimate the relative magnitudes of factors through pair-wise comparisons. Each of the respondents compares the relative importance of each pair of items using a specially designed questionnaire. AHP is targeted at group decision making, and is used for decision situations, in fields such as government, business, industry, healthcare and education. Rather than prescribing a "correct" decision, the AHP helps decision makers find the decision that best suits their goal and their understanding of the problem. It provides a comprehensive and rational framework for structuring a decision problem, for representing and quantifying its elements, for relating those elements to overall goals, and for evaluating alternative solutions. Users of the AHP first decompose their decision problem into a hierarchy of more easily comprehended sub-problems, each of which can be analyzed independently. The elements of the hierarchy can relate to any aspect of the decision problem—tangible or intangible, carefully measured or roughly estimated, well or poorly understood—anything at all that applies to the decision at hand. Once the hierarchy is built, the decision makers evaluate its various elements by comparing them to each other two at a time, with respect to their impact on an element above them in the hierarchy. In making the comparisons, the decision makers can use concrete data about the elements, and they can also use their judgments about the elements' relative meaning and importance.
,
Sergi Aguacil Moreno, Martine Laprise, Judith Elisa Drouilles, Pascal Pierre Michon, Clément Cattin, Sara Sonia Formery Regazzoni