Data wrangling, sometimes referred to as data munging, is the process of transforming and mapping data from one "raw" data form into another format with the intent of making it more appropriate and valuable for a variety of downstream purposes such as analytics. The goal of data wrangling is to assure quality and useful data. Data analysts typically spend the majority of their time in the process of data wrangling compared to the actual analysis of the data.
The process of data wrangling may include further munging, data visualization, data aggregation, training a statistical model, as well as many other potential uses. Data wrangling typically follows a set of general steps which begin with extracting the data in a raw form from the data source, "munging" the raw data (e.g. sorting) or parsing the data into predefined data structures, and finally depositing the resulting content into a data sink for storage and future use. It is closely aligned with the ETL process.
The "wrangler" non-technical term is often said to derive from work done by the United States Library of Congress's National Digital Information Infrastructure and Preservation Program (NDIIPP) and their program partner the Emory University Libraries based MetaArchive Partnership. The term "mung" has roots in munging as described in the . The term "data wrangler" was also suggested as the best analogy to describe someone working with data.
One of the first mentions of data wrangling in a scientific context was by Donald Cline during the NASA/NOAA Cold Lands Processes Experiment. Cline stated the data wranglers "coordinate the acquisition of the entire collection of the experiment data." Cline also specifies duties typically handled by a storage administrator for working with large amounts of data. This can occur in areas like major research projects and the making of films with a large amount of complex . In research, this involves both data transfer from research instrument to storage grid or storage facility as well as data manipulation for re-analysis via high-performance computing instruments or access via cyberinfrastructure-based digital libraries.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The course introduces modern methods to acquire, clean, and analyze large quantities of financial data efficiently. The second part expands on how to apply these techniques and robust statistics to fi
This course teaches the basic techniques, methodologies, and practical skills required to draw meaningful insights from a variety of data, with the help of the most acclaimed software tools in the dat
The course will provide the opportunity to tackle real world problems requiring advanced computational skills and visualisation techniques to complement statistical thinking. Students will practice pr
Data preprocessing can refer to manipulation or dropping of data before it is used in order to ensure or enhance performance, and is an important step in the data mining process. The phrase "garbage in, garbage out" is particularly applicable to data mining and machine learning projects. Data collection methods are often loosely controlled, resulting in out-of-range values, impossible data combinations, and missing values, amongst other issues. Analyzing data that has not been carefully screened for such problems can produce misleading results.
Data science is an interdisciplinary academic field that uses statistics, scientific computing, scientific methods, processes, algorithms and systems to extract or extrapolate knowledge and insights from noisy, structured, and unstructured data. Data science also integrates domain knowledge from the underlying application domain (e.g., natural sciences, information technology, and medicine). Data science is multifaceted and can be described as a science, a research paradigm, a research method, a discipline, a workflow, and a profession.
In computing, extract, transform, load (ETL) is a three-phase process where data is extracted, transformed (cleaned, sanitized, scrubbed) and loaded into an output data container. The data can be collated from one or more sources and it can also be output to one or more destinations. ETL processing is typically executed using software applications but it can also be done manually by system operators. ETL software typically automates the entire process and can be run manually or on reoccurring schedules either as single jobs or aggregated into a batch of jobs.
This directory contains open-source data obtained using a single-bladed H-type vertical-axis wind turbine prototype with individual blade pitching. This data results from the optimisation of the blade's pitching kinematics using a genetic algorithm at two ...
Zenodo2024
, , ,
Machine learning (ML) models for molecules and materials commonly rely on a decomposition of the global target quantity into local, atom-centered contributions. This approach is convenient from a computational perspective, enabling large-scale ML-driven si ...
Washington2023
Dataset for the manuscript "Lithium tantalate photonic integrated circuits for volume manufacturing". DOI: 10.1038/s41586-024-07369-1 Contains all raw data and code used to produce the Figures and Extended Data Figures in the manuscript. ...