An ylide or ylid (ˈɪlɪd) is a neutral dipolar molecule containing a formally negatively charged atom (usually a carbanion) directly attached to a heteroatom with a formal positive charge (usually nitrogen, phosphorus or sulfur), and in which both atoms have full octets of electrons. The result can be viewed as a structure in which two adjacent atoms are connected by both a covalent and an ionic bond; normally written X+–Y−. Ylides are thus 1,2-dipolar compounds, and a subclass of zwitterions. They appear in organic chemistry as reagents or reactive intermediates.
The class name "ylide" for the compound should not be confused with the suffix "-ylide".
Many ylides may be depicted by a multiple bond form in a resonance structure, known as the ylene form, while the actual structure lies in between both forms:
The actual bonding picture of these types of ylides is strictly zwitterionic (the structure on the right) with the strong Coulombic attraction between the "onium" atom and the adjacent carbon accounting for the reduced bond length. Consequently, the carbon anion is trigonal pyramidal.
Phosphonium ylides are used in the Wittig reaction, a method used to convert ketones and especially aldehydes to alkenes. The positive charge in these Wittig reagents is carried by a phosphorus atom with three phenyl substituents and a bond to a carbanion. Ylides can be 'stabilised' or 'non-stabilised'. A phosphonium ylide can be prepared rather straightforwardly. Typically, triphenylphosphine is allowed to react with an alkyl halide in a mechanism analogous to that of an SN2 reaction. This quaternization forms an alkyltriphenylphosphonium salt, which can be isolated or treated in situ with a strong base (in this case, butyl lithium) to form the ylide.
Due to the SN2 mechanism, a less sterically hindered alkyl halide reacts more favorably with triphenylphosphine than an alkyl halide with significant steric hindrance (such as tert-butyl bromide). Because of this, there will typically be one synthetic route in a synthesis involving such compounds that is more favorable than another.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The asymmetric synthesis of fine chemicals is a research topic of growing importance for the synthesis of modern materials, drugs and agrochemicals. In this lecture, the concepts of asymmetric catalys
Organophosphorus chemistry is the scientific study of the synthesis and properties of organophosphorus compounds, which are organic compounds containing phosphorus. They are used primarily in pest control as an alternative to chlorinated hydrocarbons that persist in the environment. Some organophosphorus compounds are highly effective insecticides, although some are extremely toxic to humans, including sarin and VX nerve agents. Phosphorus, like nitrogen, is in group 15 of the periodic table, and thus phosphorus compounds and nitrogen compounds have many similar properties.
Triphenylphosphine (IUPAC name: triphenylphosphane) is a common organophosphorus compound with the formula P(C6H5)3 and often abbreviated to PPh3 or Ph3P. It is widely used in the synthesis of organic and organometallic compounds. PPh3 exists as relatively air stable, colorless crystals at room temperature. It dissolves in non-polar organic solvents such as benzene and diethyl ether. Triphenylphosphine can be prepared in the laboratory by treatment of phosphorus trichloride with phenylmagnesium bromide or phenyllithium.
Dimethyl sulfoxide (DMSO) is an organosulfur compound with the formula (CH3)2SO. This colorless liquid is the sulfoxide most widely used commercially. It is an important polar aprotic solvent that dissolves both polar and nonpolar compounds and is miscible in a wide range of organic solvents as well as water. It has a relatively high boiling point. DMSO has the unusual property that many individuals perceive a garlic-like taste in the mouth after DMSO makes contact with their skin.
Explores stereoselective synthesis through Wittig and Julia reactions, emphasizing reactivity and regioselectivity of carbocations and the use of borane derivatives.
Explores the synthesis and reactivity of chiral ylides in cycloadditions and catalytic processes, including asymmetric cyclopropanation and hydrogen bond-mediated selectivity.
A chiral CpxRhIII catalyst system in situ generated from a CpxRhI(cod) precatalyst and bis(o‐toluoyl) peroxide as activating oxidant was developed for a C−H activation/ring‐opening sequence between aryl ketoxime ethers and 2,3‐diazabicyclo[2.2.1]hept‐5‐ene ...
A copper(I)-catalyzed vinylation of diazo compounds with vinylbenziodoxolone reagents (VBX) as partners is reported. The transformation tolerates diverse functionalities on both reagents delivering polyfunctionalized vinylated products. The strategy was su ...
A conceptually novel macrolactonization technology is described. A strategically positioned 5-aminooxazole served as an internal traceless activator of the neighboring C-terminal carboxylic acid allowing the occurrence of macrolactonization under mild acid ...