Summary
Crystallization is the process by which solid forms, where the atoms or molecules are highly organized into a structure known as a crystal. Some ways by which crystals form are precipitating from a solution, freezing, or more rarely deposition directly from a gas. Attributes of the resulting crystal depend largely on factors such as temperature, air pressure, and in the case of liquid crystals, time of fluid evaporation. Crystallization occurs in two major steps. The first is nucleation, the appearance of a crystalline phase from either a supercooled liquid or a supersaturated solvent. The second step is known as crystal growth, which is the increase in the size of particles and leads to a crystal state. An important feature of this step is that loose particles form layers at the crystal's surface and lodge themselves into open inconsistencies such as pores, cracks, etc. The majority of minerals and organic molecules crystallize easily, and the resulting crystals are generally of good quality, i.e. without visible defects. However, larger biochemical particles, like proteins, are often difficult to crystallize. The ease with which molecules will crystallize strongly depends on the intensity of either atomic forces (in the case of mineral substances), intermolecular forces (organic and biochemical substances) or intramolecular forces (biochemical substances). Crystallization is also a chemical solid–liquid separation technique, in which mass transfer of a solute from the liquid solution to a pure solid crystalline phase occurs. In chemical engineering, crystallization occurs in a crystallizer. Crystallization is therefore related to precipitation, although the result is not amorphous or disordered, but a crystal. Crystallization#Dynamics The crystallization process consists of two major events, nucleation and crystal growth which are driven by thermodynamic properties as well as chemical properties.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications (43)
Related concepts (66)
Freezing
Freezing is a phase transition where a liquid turns into a solid when its temperature is lowered below its freezing point. In accordance with the internationally established definition, freezing means the solidification phase change of a liquid or the liquid content of a substance, usually due to cooling. For most substances, the melting and freezing points are the same temperature; however, certain substances possess differing solid-liquid transition temperatures. For example, agar displays a hysteresis in its melting point and freezing point.
Mass transfer
Mass transfer is the net movement of mass from one location (usually meaning stream, phase, fraction or component) to another. Mass transfer occurs in many processes, such as absorption, evaporation, drying, precipitation, membrane filtration, and distillation. Mass transfer is used by different scientific disciplines for different processes and mechanisms. The phrase is commonly used in engineering for physical processes that involve diffusive and convective transport of chemical species within physical systems.
Recrystallization (chemistry)
In chemistry, recrystallization is a technique used to purify chemicals. By dissolving a mixture of a compound and impurities in an appropriate solvent, either the desired compound or impurities can be removed from the solution, leaving the other behind. It is named for the crystals often formed when the compound precipitates out. Alternatively, recrystallization can refer to the natural growth of larger ice crystals at the expense of smaller ones. In chemistry, recrystallization is a procedure for purifying compounds.
Show more
Related courses (15)
CH-108(a): Chemistry Laboratory Work I
Familiariser l'étudiant avec le travail au laboratoire. Travailler de façon quantitative et/ou qualitative. TP réalisés en relation avec les cours de chimie de 1ere année et complémentaires avec le c
CH-230: Organic chemistry laboratory Work
Méthodes de purification (distillation, cristallisation, chromatographie), synthèse organique simple: bromation, réduction, acylation, imine, nitration, Grignard, Reformatsky Acquisition des connaiss
ChE-311: Biochemical engineering
This course introduces the basic principles of bioprocess engineering and highlights the similarities and differences with chemical engineering. Without going into the fundamentals, it proposes an ove
Show more
Related lectures (94)
Crystal Structures: Miller Indices and Atom Arrangement
Explores crystal structures, Miller indices, X-ray diffraction, and solid microstructures.
Precipitation Video: Latent Heat and Crystal Formation
Covers latent heat storage and crystal formation in supersaturated solutions.
Crystal Structures: Arrangement and Diffraction
Explores crystal structures, unit cells, Miller indices, and X-ray diffraction principles.
Show more
Related MOOCs (2)
Sorption and transport in cementitious materials
Learn how to study and improve the durability of cementitious materials.
Cement Chemistry and Sustainable Cementitious Materials
Learn the basics of cement chemistry and laboratory best practices for assessment of its key properties.