A variable speed of light (VSL) is a feature of a family of hypotheses stating that the speed of light may in some way not be constant, for example, that it varies in space or time, or depending on frequency. Accepted classical theories of physics, and in particular general relativity, predict a constant speed of light in any local frame of reference and in some situations these predict apparent variations of the speed of light depending on frame of reference, but this article does not refer to this as a variable speed of light. Various alternative theories of gravitation and cosmology, many of them non-mainstream, incorporate variations in the local speed of light.
Attempts to incorporate a variable speed of light into physics were made by Robert Dicke in 1957, and by several researchers starting from the late 1980s.
VSL should not be confused with faster than light theories, its dependence on a medium's refractive index or its measurement in a remote observer's frame of reference in a gravitational potential. In this context, the "speed of light" refers to the limiting speed c of the theory rather than to the velocity of propagation of photons.
Einstein's equivalence principle, on which general relativity is founded, requires that in any local, freely falling reference frame, the speed of light is always the same. This leaves open the possibility, however, that an inertial observer inferring the apparent speed of light in a distant region might calculate a different value. Spatial variation of the speed of light in a gravitational potential as measured against a distant observer's time reference is implicitly present in general relativity. The apparent speed of light will change in a gravity field and, in particular, go to zero at an event horizon as viewed by a distant observer. In deriving the gravitational redshift due to a spherically-symmetric massive body, a radial speed of light dr/dt can be defined in Schwarzschild coordinates, with t being the time recorded on a stationary clock at infinity.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Cosmology () is a branch of physics and metaphysics dealing with the nature of the universe. The term cosmology was first used in English in 1656 in Thomas Blount's Glossographia, and in 1731 taken up in Latin by German philosopher Christian Wolff, in Cosmologia Generalis. Religious or mythological cosmology is a body of beliefs based on mythological, religious, and esoteric literature and traditions of creation myths and eschatology. In the science of astronomy, cosmology is concerned with the study of the chronology of the universe.
The Planck constant, or Planck's constant, is a fundamental physical constant of foundational importance in quantum mechanics. The constant gives the relationship between the energy of a photon and its frequency, and by the mass-energy equivalence, the relationship between mass and frequency. Specifically, a photon's energy is equal to its frequency multiplied by the Planck constant. The constant is generally denoted by . The reduced Planck constant, or Dirac constant, equal to divided by , is denoted by .
Faster-than-light (also FTL, superluminal or supercausal) travel and communication are the conjectural propagation of matter or information faster than the speed of light (c). The special theory of relativity implies that only particles with zero rest mass (i.e., photons) may travel at the speed of light, and that nothing may travel faster. Particles whose speed exceeds that of light (tachyons) have been hypothesized, but their existence would violate causality and would imply time travel.
Introduces scalar gravity, covering covariant derivatives, Ricci tensor, Einstein Equivalence Principle, and the generalization of Newtonian gravity equations.
Novel forms of light beams carrying orbital angular momentum (OAM) have recently gained interest, especially due to some of their intriguing propagation features. Here, we experimentally demonstrate the generation of near-diffraction-free two-dimensional ( ...
Optica Publishing Group2022
, , ,
Cosmological constraints from key probes of the Euclid imaging survey rely critically on the accurate determination of the true redshift distributions, n(z); of tomographic redshift bins. We determine whether the mean redshift, < z >, of ten Euclid tomogra ...
In competing event settings, a counterfactual contrast of cause-specific cumulative incidences quantifies the total causal effect of a treatment on the event of interest. However, effects of treatment on the competing event may indirectly contribute to thi ...