**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Concept# Planck constant

Summary

The Planck constant, or Planck's constant, is a fundamental physical constant of foundational importance in quantum mechanics. The constant gives the relationship between the energy of a photon and its frequency, and by the mass-energy equivalence, the relationship between mass and frequency. Specifically, a photon's energy is equal to its frequency multiplied by the Planck constant. The constant is generally denoted by . The reduced Planck constant, or Dirac constant, equal to divided by , is denoted by .
In metrology it is used, together with other constants, to define the kilogram, the SI unit of mass. The SI units are defined in such a way that, when the Planck constant is expressed in SI units, it has the exact value = It is often used with units of eV, which corresponds to the SI unit per elementary charge.
The constant was first postulated by Max Planck in 1900 as part of a solution to the ultraviolet catastrophe. At the end of the 19th century, accurate measurements of the spectrum of black body radiation existed, but the distribution of those measurements at higher frequencies diverged significantly from what was predicted by then-existing theories. Planck empirically derived a formula for the observed spectrum. He assumed that a hypothetical electrically charged oscillator in a cavity that contained black-body radiation can only change its energy in quantized steps, and that the energies of those steps are proportional to the frequency of the oscillator's associated electromagnetic wave. He was able to calculate the proportionality constant from experimental measurements, and that constant is named in his honor. Planck himself referred to the constant as the "quantum of action".
In 1905, Albert Einstein determined a "quantum" or minimal element of the energy of the electromagnetic wave itself. The light quantum behaved in some respects as an electrically neutral particle, and was eventually called a photon. Max Planck received the 1918 Nobel Prize in Physics "in recognition of the services he rendered to the advancement of Physics by his discovery of energy quanta".

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related courses (32)

PHYS-100: Advanced physics I (mechanics)

La Physique Générale I (avancée) couvre la mécanique du point et du solide indéformable. Apprendre la mécanique, c'est apprendre à mettre sous forme mathématique un phénomène physique, en modélisant l

MSE-101(a): Materials:from chemistry to properties

Ce cours permet l'acquisition des notions essentielles relatives à la structure de la matière, aux équilibres et à la réactivité chimique en liaison avec les propriétés mécaniques, thermiques, électri

PHYS-202: Analytical mechanics (for SPH)

Présentation des méthodes de la mécanique analytique (équations de Lagrange et de Hamilton) et introduction aux notions de modes normaux et de stabilité.

Related publications (118)

Related people (23)

Related units (1)

Related concepts (69)

Conjugate variables

Conjugate variables are pairs of variables mathematically defined in such a way that they become Fourier transform duals, or more generally are related through Pontryagin duality. The duality relations lead naturally to an uncertainty relation—in physics called the Heisenberg uncertainty principle—between them. In mathematical terms, conjugate variables are part of a symplectic basis, and the uncertainty relation corresponds to the symplectic form.

Old quantum theory

The old quantum theory is a collection of results from the years 1900–1925 which predate modern quantum mechanics. The theory was never complete or self-consistent, but was rather a set of heuristic corrections to classical mechanics. The theory is now understood as the semi-classical approximation to modern quantum mechanics. The main and final accomplishments of the old quantum theory were the determination of the modern form of the periodic table by Edmund Stoner and the Pauli Exclusion Principle which were both premised on the Arnold Sommerfeld enhancements to the Bohr model of the atom.

Planckian locus

In physics and color science, the Planckian locus or black body locus is the path or locus that the color of an incandescent black body would take in a particular chromaticity space as the blackbody temperature changes. It goes from deep red at low temperatures through orange, yellowish white, white, and finally bluish white at very high temperatures. A color space is a three-dimensional space; that is, a color is specified by a set of three numbers (the CIE coordinates X, Y, and Z, for example, or other values such as hue, colorfulness, and luminance) which specify the color and brightness of a particular homogeneous visual stimulus.

Related MOOCs (9)

Plasma Physics: Introduction

Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.

Plasma Physics: Introduction

Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.

Plasma Physics: Applications

Learn about plasma applications from nuclear fusion powering the sun, to making integrated circuits, to generating electricity.

Ontological neighbourhood

: ,

:

:

Related lectures (139)

Frenet-Serret Formulas: Curvature and Torsion

Explores the Frenet-Serret formulas for curvature and torsion in three-dimensional space.

Electric Fields and Currents

Explores electric fields, energy storage, charge displacement, DC currents, and historical aspects of electricity.

Elliptic Problems: Model and Deformation

Covers elliptic problems related to a model and deformation, discussing concepts such as the model problem and deformation energy.

The presentation delves into the significance of the concept of the Environment in Architecture, examining whether the term could be construed as a constant or a variable. Supported by a series of examples from the Alpine context, it seeks to illuminate th ...

2024Jean-François Molinari, Antonio Joaquin Garcia Suarez, Tobias Brink

Surface roughness is a key factor when it comes to friction and wear, as well as to other physical properties. These phenomena are controlled by mechanisms acting at small scales, in which the topography of apparently flat surfaces is revealed. Roughness i ...

,

We find the conditions under which scale-invariant Einstein-Cartan gravity with scalar matter fields leads to an approximate conformal invariance of the flat space particle theory up to energies of the order of the Planck mass. In the minimal setup, these ...