Summary
A geophone is a device that converts ground movement (velocity) into voltage, which may be recorded at a recording station. The deviation of this measured voltage from the base line is called the seismic response and is analyzed for structure of the earth. The term geophone derives from the Greek word "γῆ (ge) " meaning "earth" and "phone" meaning "sound". Geophones have historically been passive analog devices and typically comprise a spring-mounted wire coil moving within the field of a case-mounted permanent magnet to generate an electrical signal. Recent designs have been based on microelectromechanical systems (MEMS) technology which generates an electrical response to ground motion through an active feedback circuit to maintain the position of a small piece of silicon. The response of a coil/magnet geophone is proportional to ground velocity, while MEMS devices usually respond proportional to acceleration. MEMS have a much higher noise level (50 dB velocity higher) than geophones and can only be used in strong motion or active seismic applications. The frequency response of a geophone is that of a harmonic oscillator, fully determined by corner frequency (typically around 10 Hz) and damping (typically 0.707). Since the corner frequency is proportional to the inverse square root of the moving mass, geophones with low corner frequencies (< 1 Hz) become impractical. It is possible to lower the corner frequency electronically, at the price of higher noise and cost. Although waves passing through the earth have a three-dimensional nature, geophones are normally constrained to respond to single dimension - usually the vertical. However, some applications require the full wave to be used and three-component or 3-C geophones are used. In analog devices, three moving coil elements are mounted in an orthogonal arrangement within a single case. The majority of geophones are used in reflection seismology to record the energy waves reflected by the subsurface geology. In this case the primary interest is in the vertical motion of the Earth's surface.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.