Concept

Neuroscience and intelligence

Summary
Neuroscience and intelligence refers to the various neurological factors that are partly responsible for the variation of intelligence within species or between different species. A large amount of research in this area has been focused on the neural basis of human intelligence. Historic approaches to studying the neuroscience of intelligence consisted of correlating external head parameters, for example head circumference, to intelligence. Post-mortem measures of brain weight and brain volume have also been used. More recent methodologies focus on examining correlates of intelligence within the living brain using techniques such as magnetic resonance imaging (MRI), functional MRI (fMRI), electroencephalography (EEG), positron emission tomography and other non-invasive measures of brain structure and activity. Researchers have been able to identify correlates of intelligence within the brain and its functioning. These include overall brain volume, grey matter volume, white matter volume, white matter integrity, cortical thickness and neural efficiency. Analyses of the parameters of intellectual systems, patterns of their emergence and evolution, distinctive features, and the constants and limits of their structures and functions made it possible to measure and compare the capacity of communications (~100 m/s), to quantify the number of components in intellectual systems (~1011 neurons), and to calculate the number of successful links responsible for cooperation (~1014 synapses). Although the evidence base for our understanding of the neural basis of human intelligence has increased greatly over the past 30 years, even more research is needed to fully understand it. The neural basis of intelligence has also been examined in animals such as primates, cetaceans, and rodents. One of the main methods used to establish a relationship between intelligence and the brain is to use measures of brain volume. The earliest attempts at estimating brain volume were done using measures of external head parameters, such as head circumference as a proxy for brain size.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.