Concept# Riemann curvature tensor

Summary

In the mathematical field of differential geometry, the Riemann curvature tensor or Riemann–Christoffel tensor (after Bernhard Riemann and Elwin Bruno Christoffel) is the most common way used to express the curvature of Riemannian manifolds. It assigns a tensor to each point of a Riemannian manifold (i.e., it is a tensor field). It is a local invariant of Riemannian metrics which measures the failure of the second covariant derivatives to commute. A Riemannian manifold has zero curvature if and only if it is flat, i.e. locally isometric to the Euclidean space. The curvature tensor can also be defined for any pseudo-Riemannian manifold, or indeed any manifold equipped with an affine connection.
It is a central mathematical tool in the theory of general relativity, the modern theory of gravity, and the curvature of spacetime is in principle observable via the geodesic deviation equation. The curvature tensor represents the tidal force experienced by a rigid body moving along a geode

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications

Loading

Related people

Loading

Related units

Loading

Related concepts

Loading

Related courses

Loading

Related lectures

Loading

Related publications (10)

Loading

Loading

Loading

Related people (1)

Related units

No results

Related courses (8)

PHYS-427: Relativity and cosmology I

Introduce the students to general relativity and its classical tests.

PHYS-402: Astrophysics IV : observational cosmology

Cosmology is the study of the structure and evolution of the universe as a whole. This course describes the principal themes of cosmology, as seen
from the point of view of observations.

MATH-410: Riemann surfaces

This course is an introduction to the theory of Riemann surfaces. Riemann surfaces naturally appear is mathematics in many different ways: as a result of analytic continuation, as quotients of complex domains under discontinuous group actions, as algebraic curves.

Related concepts (42)

Differential geometry

Differential geometry is a mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds. It uses the techniques of differential calculus

General relativity

General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current des

Tensor

In mathematics, a tensor is an algebraic object that describes a multilinear relationship between sets of algebraic objects related to a vector space. Tensors may map between different objects such

,

We describe the first gradient methods on Riemannian manifolds to achieve accelerated rates in the non-convex case. Under Lipschitz assumptions on the Riemannian gradient and Hessian of the cost function, these methods find approximate first-order critical points faster than regular gradient descent. A randomized version also finds approximate second-order critical points. Both the algorithms and their analyses build extensively on existing work in the Euclidean case. The basic operation consists in running the Euclidean accelerated gradient descent method (appropriately safe-guarded against non-convexity) in the current tangent space, then moving back to the manifold and repeating. This requires lifting the cost function from the manifold to the tangent space, which can be done for example through the Riemannian exponential map. For this approach to succeed, the lifted cost function (called the pullback) must retain certain Lipschitz properties. As a contribution of independent interest, we prove precise claims to that effect, with explicit constants. Those claims are affected by the Riemannian curvature of the manifold, which in turn affects the worst-case complexity bounds for our optimization algorithms.

An intrinsic approach to Finsler geometry is proposed. A concept of Finsler- Ehresmann manifold, denoted by (M,F,H), is introduced and a generalized Chern connection is built for this manifold. Conformal deformations on this manifold are considered. First, we have an analogous of Chern's theorem: we prove the existence and uniqueness of a generalized Chern connection for the manifold (M,F,H). Similarly, within an essentially koszulian formalism, we present two curvatures associated to this generalized connection, namely a R curvature and a P one. The second result is the deduction of conformal transformations laws for the generalized Chern connection and associated curvatures. The transformation of R seems to have very similar properties as that of the Riemannian curvature while that of P reveals other objects of pure Finslerian nature. Third, we construct the finsler Weyl and Schouten tensors W and S respectively and we study their conformal transformations. Furthermore, we show that for the dimension 3, the horizontal component of W for generalized Berwald manifolds is identically zero. The next result is a theorem of Weyl-Schouten type giving necessary and sufficient conditions for a Finsler-Ehresmann manifold to be conformaly R-flat. We complete this result by exploring the case of dimension 3 for Berwald spaces which gives a result very similar to the Riemannian case. In addition, we announce some necessary conditions to characterize conformal flatness of Finsler-Ehresmann manifolds.

The purpose of this thesis is to provide an intrinsic proof of a Gauss-Bonnet-Chern formula for complete Riemannian manifolds with finitely many conical singularities and asymptotically conical ends. A geometric invariant is associated to the link of both the conical singularities and the asymptotically conical ends and is used to quantify the Gauss-Bonnet defect of such manifolds. This invariant is constructed by contracting powers of a tensor involving the curvature tensor of the link. Moreover this invariant can be written in terms of the total Lipschitz-Killing curvatures of the link. A detailed study of the Lipschitz-Killing curvatures of Riemannian manifolds is presented as well as a complete modern version of Chern's intrinsic proof of the Gauss-Bonnet-Chern Theorem for compact manifolds with boundary.

Related lectures (25)