In digital signal processing, downsampling, compression, and decimation are terms associated with the process of resampling in a multi-rate digital signal processing system. Both downsampling and decimation can be synonymous with compression, or they can describe an entire process of bandwidth reduction (filtering) and sample-rate reduction. When the process is performed on a sequence of samples of a signal or a continuous function, it produces an approximation of the sequence that would have been obtained by sampling the signal at a lower rate (or density, as in the case of a photograph).
Decimation is a term that historically means the removal of every tenth one. But in signal processing, decimation by a factor of 10 actually means keeping only every tenth sample. This factor multiplies the sampling interval or, equivalently, divides the sampling rate. For example, if compact disc audio at 44,100 samples/second is decimated by a factor of 5/4, the resulting sample rate is 35,280. A system component that performs decimation is called a decimator. Decimation by an integer factor is also called compression.
Rate reduction by an integer factor M can be explained as a two-step process, with an equivalent implementation that is more efficient:
Reduce high-frequency signal components with a digital lowpass filter.
Decimate the filtered signal by M; that is, keep only every Mth sample.
Step 2 alone allows high-frequency signal components to be misinterpreted by subsequent users of the data, which is a form of distortion called aliasing. Step 1, when necessary, suppresses aliasing to an acceptable level. In this application, the filter is called an anti-aliasing filter, and its design is discussed below. Also see undersampling for information about decimating bandpass functions and signals.
When the anti-aliasing filter is an IIR design, it relies on feedback from output to input, prior to the second step. With FIR filtering, it is an easy matter to compute only every Mth output.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Basic signal processing concepts, Fourier analysis and filters. This module can
be used as a starting point or a basic refresher in elementary DSP
Adaptive signal processing, A/D and D/A. This module provides the basic
tools for adaptive filtering and a solid mathematical framework for sampling and
quantization
Advanced topics: this module covers real-time audio processing (with
examples on a hardware board), image processing and communication system design.
In signal processing, a filter bank (or filterbank) is an array of bandpass filters that separates the input signal into multiple components, each one carrying a single frequency sub-band of the original signal. One application of a filter bank is a graphic equalizer, which can attenuate the components differently and recombine them into a modified version of the original signal.
An anti-aliasing filter (AAF) is a filter used before a signal sampler to restrict the bandwidth of a signal to satisfy the Nyquist–Shannon sampling theorem over the band of interest. Since the theorem states that unambiguous reconstruction of the signal from its samples is possible when the power of frequencies above the Nyquist frequency is zero, a brick wall filter is an idealized but impractical AAF. A practical AAF makes a trade off between reduced bandwidth and increased aliasing.
In mathematics, the discrete-time Fourier transform (DTFT), also called the finite Fourier transform, is a form of Fourier analysis that is applicable to a sequence of values. The DTFT is often used to analyze samples of a continuous function. The term discrete-time refers to the fact that the transform operates on discrete data, often samples whose interval has units of time. From uniformly spaced samples it produces a function of frequency that is a periodic summation of the continuous Fourier transform of the original continuous function.
Students learn digital signal processing theory, including discrete time, Fourier analysis, filter design, adaptive filtering, sampling, interpolation and quantization; they are introduced to image pr
The high-density integration in information technology fuels the research on functional 3D nanodevices. Particularly ferromagnets promise multifunctional 3D devices for nonvolatile data storage, high-speed data processing, and non-charge-based logic operat ...
WILEY-V C H VERLAG GMBH2023
, , ,
Causal interactions between specific psychiatric symptoms could contribute to the heterogenous clinical trajectories observed in early psychopathology. Current diagnostic approaches merge clinical manifestations that co-occur across subjects and could sign ...
eLIFE SCIENCES PUBL LTD2021
, , ,
With the expanding role of converter-interfaced distributed energy resources, modern power grids are evolving towards low-inertia networks that are increasingly vulnerable to extreme dynamics. Consequently, advanced signal processing techniques are needed ...