In signal processing, a filter bank (or filterbank) is an array of bandpass filters that separates the input signal into multiple components, each one carrying a single frequency sub-band of the original signal. One application of a filter bank is a graphic equalizer, which can attenuate the components differently and recombine them into a modified version of the original signal. The process of decomposition performed by the filter bank is called analysis (meaning analysis of the signal in terms of its components in each sub-band); the output of analysis is referred to as a subband signal with as many subbands as there are filters in the filter bank. The reconstruction process is called synthesis, meaning reconstitution of a complete signal resulting from the filtering process.
In digital signal processing, the term filter bank is also commonly applied to a bank of receivers. The difference is that receivers also down-convert the subbands to a low center frequency that can be re-sampled at a reduced rate. The same result can sometimes be achieved by undersampling the bandpass subbands.
Another application of filter banks is signal compression when some frequencies are more important than others. After decomposition, the important frequencies can be coded with a fine resolution. Small differences at these frequencies are significant and a coding scheme that preserves these differences must be used. On the other hand, less important frequencies do not have to be exact. A coarser coding scheme can be used, even though some of the finer (but less important) details will be lost in the coding.
The vocoder uses a filter bank to determine the amplitude information of the subbands of a modulator signal (such as a voice) and uses them to control the amplitude of the subbands of a carrier signal (such as the output of a guitar or synthesizer), thus imposing the dynamic characteristics of the modulator on the carrier.
Some filter banks work almost entirely in the time domain, using a series of filters such as quadrature mirror filters or the Goertzel algorithm to divide the signal into smaller bands.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
A theoretical and computational framework for signal sampling and approximation is presented from an intuitive geometric point of view. This lecture covers both mathematical and practical aspects of
Students learn digital signal processing theory, including discrete time, Fourier analysis, filter design, adaptive filtering, sampling, interpolation and quantization; they are introduced to image pr
This course covers fundamental notions in image and video processing, as well as covers most popular tools used, such as edge detection, motion estimation, segmentation, and compression. It is compose
The course provides a comprehensive overview of digital signal processing theory, covering discrete time, Fourier analysis, filter design, sampling, interpolation and quantization; it also includes a
Digital Signal Processing is the branch of engineering that, in the space of just a few decades, has enabled unprecedented levels of interpersonal communication and of on-demand entertainment. By rewo
In digital signal processing, downsampling, compression, and decimation are terms associated with the process of resampling in a multi-rate digital signal processing system. Both downsampling and decimation can be synonymous with compression, or they can describe an entire process of bandwidth reduction (filtering) and sample-rate reduction. When the process is performed on a sequence of samples of a signal or a continuous function, it produces an approximation of the sequence that would have been obtained by sampling the signal at a lower rate (or density, as in the case of a photograph).
In signal processing, time–frequency analysis comprises those techniques that study a signal in both the time and frequency domains simultaneously, using various time–frequency representations. Rather than viewing a 1-dimensional signal (a function, real or complex-valued, whose domain is the real line) and some transform (another function whose domain is the real line, obtained from the original via some transform), time–frequency analysis studies a two-dimensional signal – a function whose domain is the two-dimensional real plane, obtained from the signal via a time–frequency transform.
Digital signal processing (DSP) is the use of digital processing, such as by computers or more specialized digital signal processors, to perform a wide variety of signal processing operations. The digital signals processed in this manner are a sequence of numbers that represent samples of a continuous variable in a domain such as time, space, or frequency. In digital electronics, a digital signal is represented as a pulse train, which is typically generated by the switching of a transistor.
Sentiment analysis is the automated coding of emotions expressed in text. Sentiment analysis and other types of analyses focusing on the automatic coding of textual documents are increasingly popular in psychology and computer science. However, the potenti ...
SPRINGER2022
,
Partial discharge (PD) occurrence in power transformers can lead to irreparable damage to the power network. In this paper, the inverse filter (IF) method to localize PDs in power transformers is proposed. To the best of the authors’ knowledge, this is the ...
In this thesis, we take a signal-processing approach to two research areas outside of the core of the signal processing research: geometry reconstruction and light propagation through non-uniform media.In the first area, we consider new sampling schemes in ...