Summary
The halogens (ˈhælədʒən,ˈheɪ-,-loʊ-,_-ˌdʒɛn) are a group in the periodic table consisting of six chemically related elements: fluorine (F), chlorine (Cl), bromine (Br), iodine (I), astatine (At), and tennessine (Ts), though some authors would exclude tennessine as its chemistry is unknown and is theoretically expected to be more like that of gallium. In the modern IUPAC nomenclature, this group is known as group (XVII) or group (VII). The word "halogen" means "salt former" or "salt maker". When halogens react with metals, they produce a wide range of salts, including calcium fluoride, sodium chloride (common table salt), silver bromide and potassium iodide. The group of halogens is the only periodic table group that contains elements in three of the main states of matter at standard temperature and pressure, though not far above room temperature the same becomes true of groups (I) and 15, assuming white phosphorus is taken as the standard state. All of the halogens form acids when bonded to hydrogen. Most halogens are typically produced from minerals or salts. The middle halogens—chlorine, bromine, and iodine—are often used as disinfectants. Organobromides are the most important class of flame retardants, while elemental halogens are dangerous and can be toxic. The fluorine mineral fluorospar was known as early as 1529. Early chemists realized that fluorine compounds contain an undiscovered element, but were unable to isolate it. In 1860, George Gore, an English chemist, ran a current of electricity through hydrofluoric acid and probably produced fluorine, but he was unable to prove his results at the time. In 1886, Henri Moissan, a chemist in Paris, performed electrolysis on potassium bifluoride dissolved in anhydrous hydrogen fluoride, and successfully isolated fluorine. Hydrochloric acid was known to alchemists and early chemists. However, elemental chlorine was not produced until 1774, when Carl Wilhelm Scheele heated hydrochloric acid with manganese dioxide.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.