Sophie LufkinFORMATION
2010 - Thèse de doctorat au sein de l'EDAR (Ecole doctorale Architecture, Ville, Histoire) sur la densification des friches ferroviaires, co-dirigée par les Prof. Inès Lamunière et Vincent Kaufmann
2005 - "Master of Art" en architecture, sous la direction des Prof. Patrick BERGER et Inès LAMUNIERE
2003 - Année d'échange à l'ETHZ
1999 - Entrée à l'EPFL, section architecture
1998 - Maturité type B, Collège Claparède, Genève
EXPERIENCE PROFESSIONNELLE
2010 - Architecte, Cheffe de projet chez LAR - Fernando Romero, México
2006 - Assistante de recherche à lEPFL au Laboratoire darchitecture et mobilité urbaine (LAMU), projet de recherche PNR54 "Densification des friches ferroviaires"
2005 - Architecte chez Devanthéry & Lamunière, Genève
2004 - Stage darchitecture, Eric Maria, Genève
2003 - Stage darchitecture, Sumi & Burkhalter, Zurich
2001 - Stage darchitecture, Devanthéry & Lamunière, Genève
RECOMPENSES ET BOURSES
2001 - Prix SIA Vaudoise pour le projet "Fondation Ella Maillart à Chandolin"
2005 - Prix de l'Association des diplômes A3-EPFL
2008 - Bourse Erna Hamburger
LANGUES
Français (maternelle), allemand et anglais (courantes), portugais (notions)
Denis GilletDenis Gillet received the Diploma in Electrical Engineering from the Swiss Federal Institute of Technology in Lausanne (EPFL) in 1988, and the Ph.D. degree in Information Systems also from the EPFL in 1995. During 1992 he was appointed as Research Fellow at the Information Systems Laboratory of Stanford University in the United States. He is currently Maître d'enseignement et de recherche at the EPFL School of Engineering, where he leads the React research group. His current research interests include Technologies Enhanced Learning (TEL), Human Computer Interaction (HCI), Human Devices Interaction (HDI) and Optimal Coordination of Complex and Distributed Systems. Denis Gillet is affiliated at EPFL with the Center for Intelligent Systems and the Center for Digital Education.
David Andrew BarryResearch InterestsSubsurface hydrology, constructed wetlands, ecological engineering, in particular contaminant transport and remediation of soil and groundwater; more generally, models of hydrological and vadose zone processes; application of mathematical methods to hydrological processes; coastal zone sediment transport, aquifer-coastal ocean interactions; hydrodynamics and modelling of lakes.
Boi FaltingsProfessor Faltings joined EPFL in 1987 as professor of Artificial Intelligence. He holds a PhD degree from the University of Illinois at Urbana-Champaign, and a diploma from the ETHZ. His research has spanned different areas of intelligent systems linked to model-based reasoning. In particular, he has contributed to qualitative spatial reasoning, case-based reasoning (especially for design problems), constraint satisfaction for design and logistics problems, multi-agent systems, and intelligent user interfaces. His current work is oriented towards multi-agent systems and social computing, using concepts of game theory, constraint optimization and machine learning. In 1999, Professor Faltings co-founded Iconomic Systems, a company that developed a new agent-based paradigm for travel e-commerce. He has since co-founded 5 other startup companies and advised several others. Prof. Faltings has published more than 150 refereed papers on his work, and participates regularly in program committees of all major conferences in the field. He has served as associate editor of of the major journals, including the Journal of Artificial Intelligence Research (JAIR) and the Artificial Intelligence Journal. From 1996 to 1998, he served as head of the computer science department.
Viktor KuncakViktor Kunčak joined EPFL in 2007, after receiving a PhD degree from MIT. Since then has been leading the Laboratory for Automated Reasoning and Analysis and supervised at least 12 completed PhD theses. His works on languages, algorithms and systems for verification and automated reasoning. He served as an initiator and one of the coordinators of a European network (COST action) in the area of automated reasoning, verification, and synthesis. In 2012 he received a 5-year single-investigator European Research Council (ERC) grant of 1.5M EUR. His invited talks include those at Lambda Days, Scala Days, NFM, LOPSTR, SYNT, ICALP, CSL, RV, VMCAI, and SMT. A paper on test generation he co-authored received an ACM SIGSOFT distinguished paper award at ICSE. A PLDI paper he co-authored was published in the Communications of the ACM as a Research Highlight article. His Google Scholar profile reports an over-approximate H-index of 38. He was an associate editor of ACM Transactions on Programming Languages and Systems (TOPLAS) and served as a co-chair of conferences on Computer-Aided Verification (CAV), Formal Methods in Computer Aided Design (FMCAD), Workshop on Synthesis (SYNT), and Verification, Model Checking, and Abstract Interpretation (VMCAI). At EPFL he teaches courses on functional and parallel programming, compilers, and verification. He has co-taught the MOOC "Parallel Programming" that was visited by over 100'000 learners and completed by thousands of students from all over the world.
François MaréchalPh D. in engineering Chemical process engineer
Researcher and lecturer in the field of computer aided process and energy systems engineering.
Lecturer in the mechanical engineering, electrical engineering and environmental sciences engineering in EPFL.
I'm responsible for the Minor in Energy of EPFL and I'm involved in 3 projects of the Competence Center in Energy and Mobility (2nd generation biofuel, Wood SOFC, and gas turbine development with CO2 mitigation) in which i'm contributing to the energy conversion system design and optimisation.
Short summary of my scientific carrer
After a graduation in chemical engineering from the University of Liège, I have obtained a Ph. D. from the University of Liège in the LASSC laboratory of Prof. Kalitventzeff (former president of the European working party on computer aided process engineering). This laboratory was one of the pioneering laboratory in the field of Computer Aided Process Engineering.
In the group of Professor Kalitventzeff, I have worked on the development and the applications of data reconciliation, process modelling and optimisation techniques in the chemical process industry, my experience ranges from nuclear power stations to chemical plants. In the LASSC, I have been responsible from the developments in the field of rational use of energy in the industry. My first research topic has been the methodological development of process integration techniques, combining the use of pinch based methods and of mathematical programming: e.g. for the design of multiperiod heat exchanger networks or Mixed integer non linear programming techniques for the optimal management of utility systems. Fronted with applications in the industry, my work then mainly concentrated on the optimal integration of utility systems considering not only the energy requirements but the cost of the energy requirements and the energy conversion systems. I developed methods for analysing and integrating the utility system, the steam networks, combustion (including waste fuel), gas turbines or other advanced energy conversion systems (cogeneration, refrigeration and heat). The techniques applied uses operation research tools like mixed integer linear programming and exergy analysis. In order to evaluate the results of the utility integration, a new graphical method for representing the integration of the utility systems has been developed. By the use of MILP techniques, the method developed for the utility integration has been extended to handled site scale problems, to incorporate environmental constraints and reduce the water usage. This method (the Effect Modelling and Optimisation method) has been successfully applied to the chemical plants industry, the pulp and paper industry and the power plant. Instead of focusing on academic problems, I mainly developed my research based on industrial applications that lead to valuable and applicable patented results. Recently the methods developed have been extended to realise the thermoeconomic optimisation of integrated systems like fuel cells. My present R&D work concerns the application of multi-objective optimisation strategies in the design of processes and integrated energy conversion systems.
Since 2001, Im working in the Industrial Energy Systems Laboratory (LENI) of Ecole Polytechnique fédérale de Lausanne (EPFL) where Im leading the R&D activities in the field of Computer Aided Analysis and Design of Industrial Energy Systems with a major focus on sustainable energy conversion system development using thermo-economic optimisation methodologies. A part from the application and the development of process integration techniques, that remains my major field of expertise, the applications concern :
Rational use of water and energy in Industrial processes and industrial production sites : projects with NESTLE, EDF, VEOLIA and Borregaard (pulp and paper).Energy conversion and process design : biofuels from waste biomass (with GASNAT, EGO and PSI), water dessalination and waste water treatment plant (VEOLIA), power plant design (ALSTOM), Energy conversion from geothermal sources (BFE). Integrated energy systems in urban areas : together with SCANE and SIG (GE) and IEA annexe 42 for micro-cogeneration systems.
I as well contributed to the definition of the 2000 Watt society and to studies concerning the emergence of green technologies on the market in the frame of the Alliance for Global Sustainability.
Dominique PiolettiDominique Pioletti received his Master in Physics from the Swiss Federal Institute of Technology Lausanne (EPFL) in 1992. He pursued his education in the same Institution and obtained his PhD in biomechanics in 1997. He developed original constitutive laws taking into account viscoelasticity in large deformations. Then he spent two years at UCSD as post-doc fellow acquiring know-how in cell and molecular biology. He was interested in particular to gene expression of bone cells in contact to orthopedic implant. In April 2006, Dominique Pioletti was appointed Assistant Professor tenure-track at the EPFL and is director of the Laboratory of Biomechanical Orthopedics. His research topics include biomechanics and tissue engineering of musculo-skeletal tissues; mechano-transduction in bone; development of orthopedic implant as drug delivery system. Since 2013, he has been promoted to the rank of Associate Professor.