A machine tool is a machine for handling or machining metal or other rigid materials, usually by cutting, boring, grinding, shearing, or other forms of deformations. Machine tools employ some sort of tool that does the cutting or shaping. All machine tools have some means of constraining the workpiece and provide a guided movement of the parts of the machine. Thus, the relative movement between the workpiece and the cutting tool (which is called the toolpath) is controlled or constrained by the machine to at least some extent, rather than being entirely "offhand" or "freehand". It is a power-driven metal cutting machine which assists in managing the needed relative motion between cutting tool and the job that changes the size and shape of the job material. The precise definition of the term machine tool varies among users, as discussed below. While all machine tools are "machines that help people to make things", not all factory machines are machine tools. Today machine tools are typically powered other than by the human muscle (e.g., electrically, hydraulically, or via line shaft), used to make manufactured parts (components) in various ways that include cutting or certain other kinds of deformation. With their inherent precision, machine tools enabled the economical production of interchangeable parts. Many historians of technology consider that true machine tools were born when the toolpath first became guided by the machine itself in some way, at least to some extent, so that direct, freehand human guidance of the toolpath (with hands, feet, or mouth) was no longer the only guidance used in the cutting or forming process. In this view of the definition, the term, arising at a time when all tools up till then had been hand tools, simply provided a label for "tools that were machines instead of hand tools". Early lathes, those prior to the late medieval period, and modern woodworking lathes and potter's wheels may or may not fall under this definition, depending on how one views the headstock spindle itself; but the earliest historical records of a lathe with direct mechanical control of the cutting tool's path are of a screw-cutting lathe dating to about 1483.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related categories (45)
Fasteners
A fastener (US English) or fastening (UK English) is a hardware device that mechanically joins or affixes two or more objects together. In general, fasteners are used to create non-permanent joints; that is, joints that can be removed or dismantled without damaging the joining components. Steel fasteners are usually made of stainless steel, carbon steel, or alloy steel. Other methods of joining materials, some of which may create permanent joints, include: crimping, welding, soldering, brazing, taping, gluing, cement, or the use of other adhesives.
Mass production
Mass production, also known as flow production or continuous production, is the production of substantial amounts of standardized products in a constant flow, including and especially on assembly lines. Together with job production and batch production, it is one of the three main production methods. The term mass production was popularized by a 1926 article in the Encyclopædia Britannica supplement that was written based on correspondence with Ford Motor Company.
Hydraulics
Hydraulics () is a technology and applied science using engineering, chemistry, and other sciences involving the mechanical properties and use of liquids. At a very basic level, hydraulics is the liquid counterpart of pneumatics, which concerns gases. Fluid mechanics provides the theoretical foundation for hydraulics, which focuses on applied engineering using the properties of fluids. In its fluid power applications, hydraulics is used for the generation, control, and transmission of power by the use of pressurized liquids.
Show more
Related concepts (51)
Milling (machining)
Milling is the process of machining using rotary cutters to remove material by advancing a cutter into a workpiece. This may be done by varying directions on one or several axes, cutter head speed, and pressure. Milling covers a wide variety of different operations and machines, on scales from small individual parts to large, heavy-duty gang milling operations. It is one of the most commonly used processes for machining custom parts to precise tolerances. Milling can be done with a wide range of machine tools.
Metalworking
Metalworking is the process of shaping and reshaping metals to create useful objects, parts, assemblies, and large scale structures. As a term it covers a wide and diverse range of processes, skills, and tools for producing objects on every scale: from huge ships, buildings, and bridges down to precise engine parts and delicate jewelry. The historical roots of metalworking predate recorded history; its use spans cultures, civilizations and millennia.
Tool and die maker
Tool and die makers are highly skilled crafters working in the manufacturing industries. Variations on the name include tool maker, toolmaker, die maker, diemaker, mold maker, moldmaker or tool jig and die-maker depending on which area of concentration or industry an individual works in. Tool and die makers work primarily in toolroom environments—sometimes literally in one room but more often in an environment with flexible, semipermeable boundaries from production work.
Show more
Related courses (105)
AR-211: Stereotomy
La Stéréotomie est l'art de concevoir et fabriquer des volumes complexes en pierre et des assemblages en bois. Ce cours propose une réinterprétation de la Stéréotomie avec différents outils, une réfl
MICRO-301: Manufacturing technologies
This course gives an introduction to production methods and manufacturing technologies used in microengineering. The focus is given on the understanding of physical phenomena underlying the processes,
ME-212: Industrial production processes
Application des principales catégories de procédés de production. Modèles physiques élémentaires décrivant le comportement des principaux procédés de production. Compréhension de base des aspects éc
Show more
Related lectures (390)
Conventional Machining: Material Removal and Processes
Explores conventional machining processes, emphasizing the importance of precise part shapes and dimensional accuracy.
Mechanical Construction I: Fundamental Principles of Dimensioning
Delves into the fundamental principles of dimensioning and cutting in mechanical construction, emphasizing quality and cost-effectiveness.
Mechanical Construction I: Dimensioning Principles
Explores dimensioning principles and machining processes, emphasizing the importance of cutting parameters and tool wear.
Show more
Related publications (913)

TTool: A Supervised Artificial Intelligence-Assisted Visual Pose Detector for Tool Heads in Augmented Reality Woodworking

Yves Weinand, Julien Gamerro, Andrea Settimi, Florian Aymanns, Naravich Chutisilp

We present TimberTool (TTool v2.1.1), a software designed for woodworking tasks assisted by augmented reality (AR), emphasizing its essential function of the real-time localization of a tool head’s poses within camera frames. The localization process, a fu ...
2024

Rising from rubble - Leveraging existing construction tools for upcycling concrete waste into slender walls

Katrin Beyer, Corentin Jean Dominique Fivet, Stefana Parascho, Qianqing Wang, Maxence Grangeot

In this paper, we present a new method for upcycling concrete rubble waste into slender walls through the lightweight digital augmentation of mainstream construction machines. By using such method, the environmental impact of concrete construction and demo ...
Springer2024

Development and clinical validation of computational imaging biomarkers for neurodegenerative diseases

Veronica Lily Ravano

Neurodegenerative and neuroinflammatory disorders often involve complex pathophysiological mechanisms that are – to this date – only partially understood. A more comprehensive understanding of those microstructural processes and their characterization ...
EPFL2024
Show more
Related startups (2)
PROGRAM - Produits et Recherche d'Outils Géométriques et Réalisations en Atelier Mécanique SA
Active in machining, cnc programming and mechanical components. Specializing in 5-axis machining and CNC programming, PROGRAM SA excels in producing mechanical components for diverse industries with a focus on quality, innovation, and client relationships.
Artiria Medical
Active in neurovascular, medtech and minimally invasive. Artiria Medical revolutionizes minimally invasive stroke treatment with cutting-edge deflectable guidewire technology.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.