In astronomy, an equinox is either of two places on the celestial sphere at which the ecliptic intersects the celestial equator. Although there are two such intersections, the equinox associated with the Sun's ascending node is used as the conventional origin of celestial coordinate systems and referred to simply as "the equinox". In contrast to the common usage of spring/vernal and autumnal equinoxes, the celestial coordinate system equinox is a direction in space rather than a moment in time.
In a cycle of about 25,800 years, the equinox moves westward with respect to the celestial sphere because of perturbing forces; therefore, in order to define a coordinate system, it is necessary to specify the date for which the equinox is chosen. This date should not be confused with the epoch. Astronomical objects show real movements such as orbital and proper motions, and the epoch defines the date for which the position of an object applies. Therefore, a complete specification of the coordinates for an astronomical object requires both the date of the equinox and of the epoch.
The currently used standard equinox and epoch is J2000.0, which is January 1, 2000 at 12:00 TT. The prefix "J" indicates that it is a Julian epoch. The previous standard equinox and epoch was B1950.0, with the prefix "B" indicating it was a Besselian epoch. Before 1984 Besselian equinoxes and epochs were used. Since that time Julian equinoxes and epochs have been used.
The equinox moves, in the sense that as time progresses it is in a different location with respect to the distant stars. Consequently, star catalogs over the years, even over the course of a few decades, will list different ephemerides. This is due to precession and nutation, both of which can be modeled, as well as other minor perturbing forces which can only be determined by observation and are thus tabulated in astronomical almanacs.
Precession of the equinox was first noted by Hipparchus in 129 BC, when noting the location of Spica with respect to the equinox and comparing it to the location observed by Timocharis in 273 BC.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
La Physique Générale I (avancée) couvre la mécanique du point et du solide indéformable. Apprendre la mécanique, c'est apprendre à mettre sous forme mathématique un phénomène physique, en modélisant l
A tropical year or solar year (or tropical period) is the time that the Sun takes to return to the same position in the sky of a celestial body of the Solar System such as the Earth, completing a full cycle of seasons; for example, the time from vernal equinox to vernal equinox, or from summer solstice to summer solstice. It is the type of year used by tropical solar calendars. The solar year is one type of astronomical year and particular orbital period.
In astronomy and celestial navigation, the hour angle is the angle between two planes: one containing Earth's axis and the zenith (the meridian plane), and the other containing Earth's axis and a given point of interest (the hour circle). It may be given in degrees, time, or rotations depending on the application. The angle may be expressed as negative east of the meridian plane and positive west of the meridian plane, or as positive westward from 0° to 360°. The angle may be measured in degrees or in time, with 24h = 360° exactly.
The Gregorian calendar is the calendar used in most parts of the world. It went into effect in October 1582 following the papal bull Inter gravissimas issued by Pope Gregory XIII, which introduced it as a modification of, and replacement for, the Julian calendar. The principal change was to space leap years differently so as to make the average calendar year 365.2425 days long, more closely approximating the 365.2422-day 'tropical' or 'solar' year that is determined by the Earth's revolution around the Sun.
This course covers the principles and practices of radio astronomical observations, in particular with modern interferometers. Topics range from radio telescope technology to the measurement equation
Explores ellipses, curves, and their applications in astronomy and mathematics.
Covers gnomonics, the measurement of time using shadows and the relationship with latitude and solar time.
Explains seasons, equinoxes, solstices, Earth's orbit, and solar time.
Context. We report the exploitation of a sample of Solar System observations based on data from the third Gaia Data Release (Gaia DR3) of nearly 157 000 asteroids. It extends the epoch astrometric solution over the time coverage planned for the Gaia DR4, w ...
Les Ulis Cedex A2023
, , , , ,
DNN inference accelerators executing online services exhibit low average loads because of service demand variability, leading to poor resource utilization. Unfortunately, reclaiming idle inference cycles is difficult as other workloads can not execute on a ...
How does one study the evolution of the Milky Way, or the expansion of the Universe, or explore the mysteries of Dark energy? To investigate these complex topics, astronomers require data, and a great deal of it, in the form of the spectra of stars, galaxi ...