Related concepts (7)
Monoidal t-norm logic
In mathematical logic, monoidal t-norm based logic (or shortly MTL), the logic of left-continuous t-norms, is one of the t-norm fuzzy logics. It belongs to the broader class of substructural logics, or logics of residuated lattices; it extends the logic of commutative bounded integral residuated lattices (known as Höhle's monoidal logic, Ono's FLew, or intuitionistic logic without contraction) by the axiom of prelinearity. In fuzzy logic, rather than regarding statements as being either true or false, we associate each statement with a numerical confidence in that statement.
Łukasiewicz logic
In mathematics and philosophy, Łukasiewicz logic (ˌluːkəˈʃɛvɪtʃ , wukaˈɕɛvitʂ) is a non-classical, many-valued logic. It was originally defined in the early 20th century by Jan Łukasiewicz as a three-valued modal logic; it was later generalized to n-valued (for all finite n) as well as infinitely-many-valued (א0-valued) variants, both propositional and first order. The א0-valued version was published in 1930 by Łukasiewicz and Alfred Tarski; consequently it is sometimes called the ŁukasiewiczTarski logic.
T-norm
In mathematics, a t-norm (also T-norm or, unabbreviated, triangular norm) is a kind of binary operation used in the framework of probabilistic metric spaces and in multi-valued logic, specifically in fuzzy logic. A t-norm generalizes intersection in a lattice and conjunction in logic. The name triangular norm refers to the fact that in the framework of probabilistic metric spaces t-norms are used to generalize the triangle inequality of ordinary metric spaces.
Finite-valued logic
In logic, a finite-valued logic (also finitely many-valued logic) is a propositional calculus in which truth values are discrete. Traditionally, in Aristotle's logic, the bivalent logic, also known as binary logic was the norm, as the law of the excluded middle precluded more than two possible values (i.e., "true" and "false") for any proposition. Modern three-valued logic (ternary logic) allows for an additional possible truth value (i.e. "undecided").
Infinite-valued logic
In logic, an infinite-valued logic (or real-valued logic or infinitely-many-valued logic) is a many-valued logic in which truth values comprise a continuous range. Traditionally, in Aristotle's logic, logic other than bivalent logic was abnormal, as the law of the excluded middle precluded more than two possible values (i.e., "true" and "false") for any proposition. Modern three-valued logic (ternary logic) allows for an additional possible truth value (i.e.
Fuzzy logic
Fuzzy logic is a form of many-valued logic in which the truth value of variables may be any real number between 0 and 1. It is employed to handle the concept of partial truth, where the truth value may range between completely true and completely false. By contrast, in Boolean logic, the truth values of variables may only be the integer values 0 or 1. The term fuzzy logic was introduced with the 1965 proposal of fuzzy set theory by Iranian Azerbaijani mathematician Lotfi Zadeh.
Many-valued logic
Many-valued logic (also multi- or multiple-valued logic) is a propositional calculus in which there are more than two truth values. Traditionally, in Aristotle's logical calculus, there were only two possible values (i.e., "true" and "false") for any proposition. Classical two-valued logic may be extended to n-valued logic for n greater than 2. Those most popular in the literature are three-valued (e.g.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.