Related concepts (23)
Tetrad formalism
The tetrad formalism is an approach to general relativity that generalizes the choice of basis for the tangent bundle from a coordinate basis to the less restrictive choice of a local basis, i.e. a locally defined set of four linearly independent vector fields called a tetrad or vierbein. It is a special case of the more general idea of a vielbein formalism, which is set in (pseudo-)Riemannian geometry. This article as currently written makes frequent mention of general relativity; however, almost everything it says is equally applicable to (pseudo-)Riemannian manifolds in general, and even to spin manifolds.
Einstein tensor
In differential geometry, the Einstein tensor (named after Albert Einstein; also known as the trace-reversed Ricci tensor) is used to express the curvature of a pseudo-Riemannian manifold. In general relativity, it occurs in the Einstein field equations for gravitation that describe spacetime curvature in a manner that is consistent with conservation of energy and momentum. The Einstein tensor is a tensor of order 2 defined over pseudo-Riemannian manifolds.
Holonomic basis
In mathematics and mathematical physics, a coordinate basis or holonomic basis for a differentiable manifold M is a set of basis vector fields {e_1, ..., e_n} defined at every point P of a region of the manifold as where δs is the displacement vector between the point P and a nearby point Q whose coordinate separation from P is δx^α along the coordinate curve x^α (i.e. the curve on the manifold through P for which the local coordinate x^α varies and all other coordinates are constant).

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.