Concept

The Compendious Book on Calculation by Completion and Balancing

The Compendious Book on Calculation by Completion and Balancing (الكتاب المختصر في حساب الجبر والمقابلة, al-Kitāb al-Mukhtaṣar fī Ḥisāb al-Jabr wal-Muqābalah; Liber Algebræ et Almucabola), also known as al-Jabr (Arabic: الجبر), is an Arabic mathematical treatise on algebra written in Baghdad around 820 CE by the Persian polymath Muḥammad ibn Mūsā al-Khwārizmī. It was a landmark work in the history of mathematics, establishing algebra as an independent discipline. Al-Jabr provided an exhaustive account of solving for the positive roots of polynomial equations up to the second degree. It was the first text to teach elementary algebra, and the first to teach algebra for its own sake. It also introduced the fundamental concept of "reduction" and "balancing" (which the term al-jabr originally referred to), the transposition of subtracted terms to the other side of an equation, i.e. the cancellation of like terms on opposite sides of the equation. Mathematics historian Victor J. Katz regards Al-Jabr as the first true algebra text that is still extant. Translated into Latin by Robert of Chester in 1145, it was used until the sixteenth century as the principal mathematical textbook of European universities. Several authors have also published texts under this name, including Abū Ḥanīfa al-Dīnawarī, Abū Kāmil Shujā ibn Aslam, Abū Muḥammad al-ʿAdlī, Abū Yūsuf al-Miṣṣīṣī, 'Abd al-Hamīd ibn Turk, Sind ibn ʿAlī, Sahl ibn Bišr, and Šarafaddīn al-Ṭūsī. R. Rashed and Angela Armstrong write: Al-Khwarizmi's text can be seen to be distinct not only from the Babylonian tablets, but also from the Diophantus' Arithmetica. It no longer concerns a series of problems to be resolved, but an exposition which starts with primitive terms in which the combinations must give all possible prototypes for equations, which henceforward explicitly constitute the true object of study. On the other hand, the idea of an equation for its own sake appears from the beginning and, one could say, in a generic manner, insofar as it does not simply emerge in the course of solving a problem, but is specifically called on to define an infinite class of problems.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (3)
MATH-212: Analyse numérique et optimisation
L'étudiant apprendra à résoudre numériquement divers problèmes mathématiques. Les propriétés théoriques de ces méthodes seront discutées.
MATH-101(g): Analysis I
Étudier les concepts fondamentaux d'analyse et le calcul différentiel et intégral des fonctions réelles d'une variable.
MATH-101(d): Analysis I
Étudier les concepts fondamentaux d'analyse et le calcul différentiel et intégral des fonctions réelles d'une variable.
Related lectures (19)
Integration Techniques: Parts and Simple Elements
Covers integration by parts and decomposition into simple elements, providing step-by-step explanations and examples.
Integration Techniques: Series and Functions
Covers integration techniques for series and functions, including power series and piecewise functions.
Partial Differential Equations: Equations and Solutions
Explores partial differential equations, focusing on chapter 6 equations and their solutions through Fourier series and variable separation methods.
Show more
Related publications (1)

L'algèbre al-Badi d'al-Karagi

Christophe Hebeisen

This work contains the study of the algebra called al-Badī‘ fī al-ḥisāb (literally : "the Wonderful on calculation"), written by the Persian mathematician Abu Bakr Muḥammad ibn al-Ḥusain al-Karaǧi (previously known as ...
EPFL2009
Related concepts (3)
History of algebra
Algebra can essentially be considered as doing computations similar to those of arithmetic but with non-numerical mathematical objects. However, until the 19th century, algebra consisted essentially of the theory of equations. For example, the fundamental theorem of algebra belongs to the theory of equations and is not, nowadays, considered as belonging to algebra (in fact, every proof must use the completeness of the real numbers, which is not an algebraic property).
Algebra
Algebra () is the study of variables and the rules for manipulating these variables in formulas; it is a unifying thread of almost all of mathematics. Elementary algebra deals with the manipulation of variables (commonly represented by Roman letters) as if they were numbers and is therefore essential in all applications of mathematics. Abstract algebra is the name given, mostly in education, to the study of algebraic structures such as groups, rings, and fields.
History of mathematics
The history of mathematics deals with the origin of discoveries in mathematics and the mathematical methods and notation of the past. Before the modern age and the worldwide spread of knowledge, written examples of new mathematical developments have come to light only in a few locales. From 3000 BC the Mesopotamian states of Sumer, Akkad and Assyria, followed closely by Ancient Egypt and the Levantine state of Ebla began using arithmetic, algebra and geometry for purposes of taxation, commerce, trade and also in the patterns in nature, the field of astronomy and to record time and formulate calendars.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.