Algebra can essentially be considered as doing computations similar to those of arithmetic but with non-numerical mathematical objects. However, until the 19th century, algebra consisted essentially of the theory of equations. For example, the fundamental theorem of algebra belongs to the theory of equations and is not, nowadays, considered as belonging to algebra (in fact, every proof must use the completeness of the real numbers, which is not an algebraic property).
This article describes the history of the theory of equations, called here "algebra", from the origins to the emergence of algebra as a separate area of mathematics.
The word "algebra" is derived from the Arabic word الجبر al-jabr, and this comes from the treatise written in the year 830 by the medieval Persian mathematician, Muhammad ibn Mūsā al-Khwārizmī, whose Arabic title, Kitāb al-muḫtaṣar fī ḥisāb al-ğabr wa-l-muqābala, can be translated as The Compendious Book on Calculation by Completion and Balancing. The treatise provided for the systematic solution of linear and quadratic equations. According to one history, "[i]t is not certain just what the terms al-jabr and muqabalah mean, but the usual interpretation is similar to that implied in the previous translation. The word 'al-jabr' presumably meant something like 'restoration' or 'completion' and seems to refer to the transposition of subtracted terms to the other side of an equation; the word 'muqabalah' is said to refer to 'reduction' or 'balancing'—that is, the cancellation of like terms on opposite sides of the equation. Arabic influence in Spain long after the time of al-Khwarizmi is found in Don Quixote, where the word 'algebrista' is used for a bone-setter, that is, a 'restorer'." The term is used by al-Khwarizmi to describe the operations that he introduced, "reduction" and "balancing", referring to the transposition of subtracted terms to the other side of an equation, that is, the cancellation of like terms on opposite sides of the equation.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In mathematics, reduction refers to the rewriting of an expression into a simpler form. For example, the process of rewriting a fraction into one with the smallest whole-number denominator possible (while keeping the numerator a whole number) is called "reducing a fraction". Rewriting a radical (or "root") expression with the smallest possible whole number under the radical symbol is called "reducing a radical". Minimizing the number of radicals that appear underneath other radicals in an expression is called denesting radicals.
The Compendious Book on Calculation by Completion and Balancing (الكتاب المختصر في حساب الجبر والمقابلة, al-Kitāb al-Mukhtaṣar fī Ḥisāb al-Jabr wal-Muqābalah; Liber Algebræ et Almucabola), also known as al-Jabr (Arabic: الجبر), is an Arabic mathematical treatise on algebra written in Baghdad around 820 CE by the Persian polymath Muḥammad ibn Mūsā al-Khwārizmī. It was a landmark work in the history of mathematics, establishing algebra as an independent discipline.
Algebra () is the study of variables and the rules for manipulating these variables in formulas; it is a unifying thread of almost all of mathematics. Elementary algebra deals with the manipulation of variables (commonly represented by Roman letters) as if they were numbers and is therefore essential in all applications of mathematics. Abstract algebra is the name given, mostly in education, to the study of algebraic structures such as groups, rings, and fields.
Algebraic K-theory, which to any ring R associates a sequence of groups, can be viewed as a theory of linear algebra over an arbitrary ring. We will study in detail the first two of these groups and a
Ce cours ambitionne de présenter les mathématiques de la mécanique quantique, et plus généralement de la physique quantique. Il s'adresse essentiellement aux physiciens, ou a des mathématiciens intére
Covers fundamental operations and constructibility in Euclidean geometry, exploring the limitations of geometric constructions and historical contributions.
Many problems in robotics are fundamentally problems of geometry, which have led to an increased research effort in geometric methods for robotics in recent years. The results were algorithms using the various frameworks of screw theory, Lie algebra, and d ...
Layered 2D perovskites have been extensively investigated by scientists with photovoltaics (PV) expertise due to their good environmental stability. However, a random phase distribution in the perovskite film could affect both the performance and stability ...
We tackle safe trajectory planning under Gaussian mixture model (GMM) uncertainty. Specifically, we use a GMM to model the multimodal behaviors of obstacles' uncertain states. Then, we develop a mixed-integer conic approximation to the chance-constrained t ...