**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Concept# Trigonometric functions

Summary

In mathematics, the trigonometric functions (also called circular functions, angle functions or goniometric functions) are real functions which relate an angle of a right-angled triangle to ratios of two side lengths. They are widely used in all sciences that are related to geometry, such as navigation, solid mechanics, celestial mechanics, geodesy, and many others. They are among the simplest periodic functions, and as such are also widely used for studying periodic phenomena through Fourier analysis.
The trigonometric functions most widely used in modern mathematics are the sine, the cosine, and the tangent. Their reciprocals are respectively the cosecant, the secant, and the cotangent, which are less used. Each of these six trigonometric functions has a corresponding inverse function, and an analog among the hyperbolic functions.
The oldest definitions of trigonometric functions, related to right-angle triangles, define them only for acute angles. To extend the sine and cosine functions to functions whose domain is the whole real line, geometrical definitions using the standard unit circle (i.e., a circle with radius 1 unit) are often used; then the domain of the other functions is the real line with some isolated points removed. Modern definitions express trigonometric functions as infinite series or as solutions of differential equations. This allows extending the domain of sine and cosine functions to the whole complex plane, and the domain of the other trigonometric functions to the complex plane with some isolated points removed.
Conventionally, an abbreviation of each trigonometric function's name is used as its symbol in formulas. Today, the most common versions of these abbreviations are "sin" for sine, "cos" for cosine, "tan" or "tg" for tangent, "sec" for secant, "csc" or "cosec" for cosecant, and "cot" or "ctg" for cotangent.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related courses (38)

Related MOOCs (31)

Trigonometric Functions, Logarithms and Exponentials

Ce cours donne les connaissances fondamentales liées aux fonctions trigonométriques, logarithmiques et exponentielles. La présentation des concepts et des propositions est soutenue par une grande gamm

Trigonometric Functions, Logarithms and Exponentials

Ce cours donne les connaissances fondamentales liées aux fonctions trigonométriques, logarithmiques et exponentielles. La présentation des concepts et des propositions est soutenue par une grande gamm

Analyse I

Le contenu de ce cours correspond à celui du cours d'Analyse I, comme il est enseigné pour les étudiantes et les étudiants de l'EPFL pendant leur premier semestre. Chaque chapitre du cours correspond

Related concepts (50)

Related people (33)

Related publications (223)

MATH-101(g): Analysis I

Étudier les concepts fondamentaux d'analyse et le calcul différentiel et intégral des fonctions réelles d'une variable.

MATH-101(e): Analysis I

Étudier les concepts fondamentaux d'analyse et le calcul différentiel et intégral des fonctions réelles d'une variable.

PHYS-101(a): General physics : mechanics

Le but du cours de physique générale est de donner à l'étudiant les notions de base nécessaires à la compréhension des phénomènes physiques. L'objectif est atteint lorsque l'étudiant est capable de pr

Related units (4)

The radian, denoted by the symbol rad, is the unit of angle in the International System of Units (SI) and is the standard unit of angular measure used in many areas of mathematics. It is defined such that one radian is the angle subtended at the centre of a circle by an arc that is equal in length to the radius. The unit was formerly an SI supplementary unit and is currently a dimensionless SI derived unit, defined in the SI as 1 rad = 1 and expressed in terms of the SI base unit metre (m) as .

In mathematics, the slope or gradient of a line is a number that describes both the direction and the steepness of the line. Slope is often denoted by the letter m; there is no clear answer to the question why the letter m is used for slope, but its earliest use in English appears in O'Brien (1844) who wrote the equation of a straight line as and it can also be found in Todhunter (1888) who wrote it as "y = mx + c". Slope is calculated by finding the ratio of the "vertical change" to the "horizontal change" between (any) two distinct points on a line.

In mathematics, sine and cosine are trigonometric functions of an angle. The sine and cosine of an acute angle are defined in the context of a right triangle: for the specified angle, its sine is the ratio of the length of the side that is opposite that angle to the length of the longest side of the triangle (the hypotenuse), and the cosine is the ratio of the length of the adjacent leg to that of the hypotenuse. For an angle , the sine and cosine functions are denoted simply as and .

, , , , , , , , ,

Giovanni De Cesare, Stéphanie Joëlle André, Alexandre Philippe Louis Antoine Fourrier

Most lacustrine deltas are nowadays highly anthropized systems. River training works during past centuries considered rivers mainly as vectors of water and sediments from a point source to a sink. However, numerous problems have been identified by resident ...

2024Genes implicated in translation control have been associated with autism spectrum disorders (ASDs). However, some important genetic causes of autism, including the 16p11.2 microdeletion, bear no obvious connection to translation. Here, we use proteomics, g ...

Sabine Süsstrunk, Tong Zhang, Yufan Ren

The success of the Neural Radiance Fields (NeRF) in novel view synthesis has inspired researchers to propose neural implicit scene reconstruction. However, most existing neural implicit reconstruction methods optimize perscene parameters and therefore lack ...

2024Related lectures (999)

Mathematical Functions

Covers mathematical functions, including logarithmic, exponential, and trigonometric functions, as well as limits and function types.

Wave Equations: Vibrating String

Explores the wave equation for a vibrating string and its numerical solution using finite difference formulas and the Newmark scheme in MATLAB/GNU Octave.

Black Holes: Renormalisation Group

Covers black holes and the renormalisation group, providing detailed information on these concepts.